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Abstract. A new mixture model called Weibull exponential mixture model is introduced in this
paper. The new model turns out to be quite flexible for analyzing positive data. The maximum
likelihood estimates (MLE's) of the parameters of the new mixture model are obtained based
on full samples, Type-l1 and Type-Il censored samples. Certain statistical characteristics
associated with this distribution are obtained. A simulation study is employed to check the
consistency of maximum likelihood estimates. This new distribution may provide better fitting
to describe positive data in various scientific fields such as the physical and biological sciences,
medicine, meteorology, and engineering.
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1 Introduction

Lifetime data are present widely in many different applications. However, the data in many
applications such as economics, engineering, biological studies, environmental sciences,
medical sciences, and finance can be considered as data coming from mixture population of
two or more different distributions. Much research focus on extending and modifying the
existing classical distribution to obtain greater flexibility and adaptability in modeling data
from different mixture populations. Recently, the mixture modeling has been employed for
modeling data from different mixture populations. This paper shows the idea of generating new
model by applying the mixture modeling with Weibull exponential distribution (MWE).

The using of finite mixture models is very old in the history of statistics. It was useful in
modeling population heterogeneity, classification, clustering and generalize distribution
assumptions. The first use of finite mixture models was in the nineteenth century in a paper by
Newcomb (1886) who used it in the context of modeling outliers. Pearson (1894) studied of a
mixture of two univariate Gaussian distribution and estimated the parameters of the model using
the method of moments. He used the mixture approach to analyze a data set containing ratios
of forehead to body lengths for 1,000 crabs. Figueiredo and Jain (2002) used the finite mixture
to unsupervised learning models. In (2011), Franco et al. studied the classification of the aging
properties of generalized mixtures of two or three Weibull distributions in terms of the mixing
weights, scale parameters and a common shape parameter. Razali and Al-Wakeel (2013) used
the mixture of two and three Weibull distributions to analyze the data of failure times. Zhang
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et al. (2014) proposed mixture Weibull proportional hazards model to predict the failure of a
mechanical system with multiple failure modes. Elshahat and Mahmoud (2016) studied the
mixture of exponentiated-Weibull distribution and estimated the parameters using maximum
likelihood estimation. Qutb et al. (2016) obtained the estimation of the parameters, reliability
and hazard rate functions of the mixture of two Weibull distributions with a common shape
parameter, based on the generalized order statistics. Huang et al. (2017) discussed likelihood
method for finite multivariate Gaussian mixture models. Zong et al. (2018) studied a deep
autoencoding Gaussian mixture model for unsupervised anomaly. McLachlan et al. (2019)
provided the methodological and theory for the applications of finite mixture models and
discussed the role of mixture models in clustering of independent and identically distributed
data. They also used the maximum likelihood estimation and the moment estimation methods
for parametric mixture models. Teamah et al. (2020) introduced a new mixture distribution as
a result of mixing Fr'echet-Weibull distribution with exponential distribution; it is called
Fr echet-Weibull mixture exponential distribution and used the maximum likelihood estimation
for estimating the parameters of the mixture distribution.

In this paper we will form and study a mixture of two component of Weibull exponential
distribution. Also, we provide a comprehensive comparison of different estimation methods
for the model parameters. The following criteria are used for comparison: the Bias and the
mean squared error (MSE). Simulated data are used to study the performance of model
estimators.

2 Two-Components Mixture Weibull Exponential Distribution
The probability density function (PDF) of the Weibull exponential distribution is given as

Ax

fx) = % c A€ x¢ 1 e_(T) ,x=>0,¢,4,8 >0, (1)

and the cumulative distribution function (CDF) is given by

-G
F(x)=1—¢e ‘B )
The hazard rate function is given as

h(x) = % cA° x°7 1L, 3)

A density function for the mixture of two components densities with mixing proportions p is
defined as

fG) =pfi(x)+ (1 -p) LK),

llx)cl
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where p satisfies the condition, 0 < p < 1. The CDF for the mixture model is defined as

F(x) = pFi(x) + (1 - p)F>(x),
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=p [1 - e_(/?_f)q] + (1-p) [1 - e_(lﬁz_;)cz]. (5)

The reliability function for the mixture model is given as

A1x\€1 Azx)cz

RG) =pe B+ 1 —pe ©)
The hazard rate function is given as

& & ()
h(x c( ) x4 (1 - c( ) xC271,
X =pq B, ( p)c; B,

The reversed hazard rate function is given as

c A1x\€1 [ A,x\€2
o} (%) ' x1 e_(ﬁ) + [ (?;—2) ’ xcz‘le_<ﬁ)
— 1 _ 2
rh(x) =p § (M)cl +1-p) 3 (/1z_x>2
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The quantile function is given as
.81 1/c '81 1/c
QW) =p| - (-Log(1 —uw)**|+ (1 —p) ( Log(1 —u))*=
1
Graphical description
The plots of PDF and the hazard function (HZ) are displayed for different values of parameters
in Figurel. The figure shows several forms for PDF and HZ curve. This indicates this new
distribution is flexible and may be suitable for a different type of data.
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Figure 1 Plots of PDF and HZ functions of the MWE distribution.

3 General Properties
3.1Moment

The finite mixture of the r* moments of the two components is represented as

Aq1x

2 c1
fr = Z pj ha = fP o At By et e_(E> dx
=1

Axx

€2
+JA=p) 7 B2 xmre e (5) " ax. 9)
EGN) =p(8) /(Z“) +a-» (&) (E+1). (10)
The mean is given when r = 1 as follows

;il=p% ,(i+1)+(1—p)§—2 /(é+1)

(11)
The variance is given as follows
s 2
o> =EMX?) —u, .

The moments generating function of MWE distribution is expressed as

My (t) = fe”‘fj(x)dx
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My (t) = p[My; ()] + (1 — p) [Mx,(£)].
So, the moments generating function of MWE distribution can be written as
M@ =3 o (B) [(E+1) +a-n (&) ((E+1)}
(12)

3.2 Incomplete Moments
The rth incomplete moment of MWE distribution is given as

A1x

2 z c1
@)= Z Pjljr = J XTpey LBy xet e_(ﬂ) dx
=1

lzx

c2
+[7xT(1 = p) cp 1,2 By xC271 e_(ﬁ) dx. (13)

The first incomplete moment of a finite mixture of k components equal

A1x

) Z )"
T,(z) = Z Pjkj1 = f xpo LB Txamle VB dx
=1

Axx

2
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3.3 Mean Deviations

The mean deviation about the mean u of MWR distribution is given as

S
61 = f lx — ul [p <C1 LB txrThe \B )
D

_(Az_x>”2
+(1-p) (Cz 1, B 2 x27 e \ P2 )] dx.

)L1X
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(15)

and the mean deviation about the median M equals
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(16)
Since, the median is given as F(x; 4, ¢, B) = % these forms can be written as
81 =2uF(x;A,¢c,B) — 2T, (W),
and
62 = u —2T, (M),
where T, (2) is the first incomplete moment of X obtained from (14). Therefore

§1; = Zijj(x; A, Cj:.Bj) —2T1 (1)),

and
82j=u; — 2T, (M),
where
sl o)
=2u(p|l—e ‘F/ |+(1—p)|l—e ‘F2 2T, (W),
and

82 = pu — 2T, (M).
3.4 Rényi Entropy

The Rényi entropy of MWE model is expressed as

1 — _<h_x)”1
H3(x) = T Slogp f [(p B Txatle (A )
D

+a-p) (i g @) el an

It is a difficult problem to obtain H3 (x) in closed-form for the mixture model.
3.5 Shannon entropy

The Shannon entropy of X is represented as

Hs(x) = Ex{-log(f(x; A, ¢, )},
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where the log-likelihood function is given as

log[f;(x,c;, 4, ;)] = logp + log ¢, + cilog 44 — c;log B,

A\
+(c; —1Dlog x — <[3’L) +log (1 —p)+logc,
1
A\
+c, log A, — cylog B, + (c; — 1) logx — <ﬁ’_) .
2

Thus, it can be reduced to

Hy(x) = —logp —log ¢; — c;log A, + c,log B

C1

) —log (1-p) - loge,

(¢, = DE(log X) + E ( 7

C;
—c, log A, + c;log B, — (c; — 1)E(log X) — E (/1;—:) ’ (18)

3.6 Distribution of order statistic

The rt" order statistics for the MWR distribution can be written as

n-r

! . -
frn) = G r)?(r —1)! Z(_l)l (n i r)

i=0

A1x

et gt (8" (5
% (p M TxTle VA + (1 —p) A, By x2Te VA2 )

X [p (1 _ ) 1) +(1-p) (1 _e ) 2)] . (19
Special Cases:

If r =1, in (19), the PDF of the smallest order statistic can be obtained.

If r = n,in (19), the PDF of the largest order statistic can be obtained.

Ifr = nTH in (19), the PDF of the median observable in the odd sample size case can be
obtained.

4 Estimation of Mixture Weibull Exponential Distribution

In this section, the parameters of MWE distribution is estimated by maximum likelihood
estimation method with complete sample and censoring samples of Type | and Type II.
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4.1 Maximum likelihood estimation based on complete sample

If x;, x5, ..., x,, is arandom sample of size n from the MWE distribution, then the log likelihood
function for the vector of parameters 6; = (cj, A;, B;) is given as

c:
Aj"i) ]

NY e
£e 2y B) = Tia |Log | ey pyci () 170 e % (20)

The MLEs can be computed by differentiating (20) with respect to each parameter as follows

c A\ c:
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0 i=1 .. <A]xl-)cj
AN -
Z?:lpjcj (/”_j> I ki
. Aix\CJ
CJZ lj J C] 1 _<%) lljxi C}'
1—.<—.) i e \"J 1—(—.)
0 m Bj \Bj j (23)
ap; i=1 Ay

Where j = 1,2, and p; = p,p, = 1 — p. The MLEs for each parameter can be derived either
by solving the system of non-linear equations (21), (22) and (23) numerically or by maximizing
(20) by optimization techniques sing the programming language R

4.2 Maximum likelihood estimation based on Type | censored samples

If x4, x5, ..., x,, is @ random sample of size n from the MWE distribution, then the log likelihood
function of Type I censored sample for the vector of parameters 6; = (c;, 4;, 5;) is given as
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The MLEs can be computed by differentiating (24) with respect to each parameter as follows
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Where j =1,2,and p; = p,p, = 1 — p. The MLEs for each parameter can be derived either
by solving the system of non-linear equations (25), (26) and (27) numerically or by maximizing
(24) by optimization techniques using the programming language R

4.3 Maximum likelihood estimation based on Type Il censored samples

If x;, x5, ..., x,, isarandom sample of size n from the MWE distribution, then the log likelihood
function of Type Il censored sample for the vector of parameters 8; = (c;, 4;, 5;) is given as

y ]-xi)cj

m k ci
n! } } AN cj-1 _( Bj
f(Cj,Aj,ﬁj) = logm+ lOg p] Cj ‘B_J X7 e J
i=1 =
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The MLEs can be computed by differentiating (28) with respect to each parameter as follows
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Where j = 1,2, and p; = p,p, = 1 — p. The MLEs for each parameter can be derived either
by solving the system of non-linear equations (29), (30) and (31) numerically or by maximizing
(28) by optimization techniques using the programming language R.

4.4 Estimation of the reliability, hazard, and reversed hazard rate functions

The invariance property of the ML estimators enables us to obtain the ML estimators of the
reliability, hazard rate and reversed hazard rate functions by replacing the parameters c;, 4;and
pB; by their ML estimators in (21), (22) and (23) or (25), (26) and (27) or (29), (30) and (31),
respectively, as follows:

R(x) = pe (%) + (1 —ple (%) , (32)
N - s 3 2
Rx) = pL2 x4 (1 - p) L2 x7t, (33)
b1 B2
A Aix 1 2 Aox c2
& A}fl xel_le_<3711) 2 ,?22 xZ‘Z_le_(TzZ)
h — B1° _ B2
Th(x) =p - (M)Cl +(1-p) - <m)” , (34)
1—e B1 1-e 32

where x > 0, ¢, 4;,5; > 0,¢, 4; and j; are the ML estimators of ¢;, 4;, §; and j = 1, 2.
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5 Simulation study

In this section, a simulation study is proceeded to evaluate the performance of the maximum
likelihood estimators for each parameter of the new mixture distribution. The Monte Carlos
simulation procedure is applied for full samples, Type | and Type Il censoring samples, for
different sample sizes (n = 30, 50,100 and, 150) and diffident mixture weights (p = 0.5 and
0.6). and diffident ratio of effective sizes ( 90%, 80% and 70%) Each simulation study is
repeated for N = 1000. ML estimate, Bias and MSE are calculated for each situation and
reported in Table (1), (2), (3), (4), (5) and (6).

In general, it is noted that most of the estimates of parameters by maximum likelihood

estimation are accurate compared with the estimates of parameters by the maximum likelihood
estimation with censored data Type | and Type Il according to the resulted values of MSE.

Table 1. ML averages, Bias and MSE of MWE parameters based on Full Sample at p =

0.5
Parameters
p N Results ¢, =15 L =15 c; =3 1, =0.5
MLE 15.0491 1.5031 3.2571 05075
30 Bias 0.0491 0.0031 0.2571 0.0075
MSE 0.2458 0.0009 05127 0.0024
MLE 15.0018 1.5023 3.1220 05070
50 Bias 0.0018 0.0023 0.1220 0.0070
MSE 0.2197 0.0005 0.2245 0.0016
0.5 MLE 15.0113 1.5012 3.0652 0.5033
100 Bias 0.0113 0.0012 0.0652 0.0033
MSE 0.1285 0.0002 0.1197 0.0007
MLE 15.0129 1.5002 3.0516 0.5022
150 Bias 0.0129 0.0002 0.0516 0.0022
MSE 0.0653 0.0002 0.0870 0.0005

Table 2. ML averages, Bias and MSE of MWE parameters based on Full Sample at p =

0.6.
Parameters

p N Results ¢, =15 2, =15 c, =3 1, =0.5
MLE 15.0448 15029 3.2415 0.5099
30 Bias 0.0448 0.0029 0.2415 0.0099
06 MSE 0.2783 0.0007 0.4597 0.0031
50 MLE 15.0015 1.5024 3.1391 0.5059
Bias 0.0015 0.0024 0.1391 0.0059
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MSE 0.1960 0.0004 0.2416 0.0017
MLE 15,0035 1.5009 3.0640 0.5046
100 Bias 0.0035 0.0009 0.0640 0.0046
MSE 0.0880 0.0002 0.1166 0.0009
MLE 15,0020 15001 3.0492 0.5030
150 Bias 0.0020 0.0001 0.0492 0.0030
MSE 0.0607 0.0001 0.0817 0.0006

Table 3. ML averages, Bias and MSE of MWE parameters based on Type | Censored at

p =0.5.
Parameters
P T ¢ =15 A =15 =3 1, =05
MLE 15.0035 1.4984 2.9986 0.5094
30 Bias 0.0035 -0.0016 -0.0014 0.0094
MSE 0.0200 0.0023 0.0065 0.0196
MLE 14.9990 1.4995 2.9989 0.5042
50 Bias -9.8719e-04 -5.3945e-04 -1.1336e-03 4.2436e-03
90% MSE 0.0016 0.0012 0.0021 0.0009
MLE 14.9999 1.5009 2.9979 0.5053
100 Bias -0.0001 0.0009 -0.0021 0.0053
MSE 0.0013 0.0012 0.0022 0.0009
MLE 14.9979 1.499 2.9993 0.5051
150 Bias -2.0182e-03 -8.8570e-04 -7.0493e-04 5.0554e-03
MSE 0.0014 0.0007 0.0012 0.0007
MLE 15.0005 1.4997 2.9972 0.5021
05 30 Bias 0.0005 -0.0003 -0.0028 0.0021
’ MSE 0.0027 0.0031 0.0023 0.0017
MLE 14.9989 1.5002 2.9989 0.5005
50 Bias -0.0010 0.0002 -0.0011 0.0005
80% MSE 0.0028 0.0011 0.0023 0.0008
MLE 15.0010 1.5003 2.9988 0.5017
100 Bias 0.0010 0.0003 -0.0013 0.0017
MSE 0.0025 0.0018 0.0019 0.0007
MLE 15.0022 1.4981 2.9985 0.5009
150 Bias 0.0022 -0.0019 -0.0015 0.0009
MSE 0.0019 0.0014 0.0016 0.0005
MLE 14.9961 1.5017 2.9982 0.4982
70% 30 Bias -0.0039 0.0017 -0.0018 -0.0018
MSE 0.0042 0.0039 0.0047 0.0017
50 MLE 14.9993 1.4999 2.9965 0.4969
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Bias -6.5548e-04 -5.0657e-05 -3.5099¢e-03 -3.1144e-03
MSE 0.0025 0.0021 0.0031 0.0012
MLE 14.9986 1.4972 2.9997 0.4978
100 Bias -0.0014 -0.0028 -0.0003 -0.0022
MSE 0.0017 0.0011 0.0015 0.0008
MLE 15.0004 1.4998 3.0012 0.4978
150 Bias 0.0004 -0.0002 0.0012 -0.0022
MSE 0.0018 0.0006 0.0014 0.0007

Table 4. ML averages, Bias and MSE of MWE parameters based on Type | Censored at

p =0.6.
Parameters

P N | Results c =15 A, =15 ¢, =3 1, =05
MLE 15.0008 1.4984 2.9999 0.5026
30 | Bias 0.0008 20.0016 20.0001 0.0028
MSE 0.0032 0.0026 0.0036 0.0018
MLE 15.0005 1.5001 2.9981 0.5046
50 | Bias 0.0005 0.0001 20.0019 0.0046
50% MSE 0.0029 0.00306 0.0050 0.0013
MLE 14.9998 1.4996 2.9995 0.5036
100 | Bias 20.0002 20.0004 -0.0005 0.0036
MSE 0.0011 0.0007 0.0029 0.0045
MLE 15.0019 15019 2.9996 0.5019
150 | Bias 0.0019 0.0019 20.0004 0.0019
MSE 0.0009 0.0006 0.0008 0.0004
MLE 15.0053 1.4999 2.9997 0.5025
0.6 30 [ Bias 0.0053 -0.0001 -0.0003 0.0025
MSE 0.0220 0.0108 0.0080 0.0062
MLE 14.9995 1.4976 2.9998 0.5004
50 | Bias -0.0005 20.0024 20.0002 0.0004
50% MSE 0.0018 0.0018 0.0018 0.0008
MLE 15.0008 1.5004 2.9989 0.4998
100 | Bias 0.0008 0.0004 20.0011 20.0002
MSE 0.0026 0.0009 0.0014 0.0005
MLE 15.00009 1.4990 2.9986 0.5001

150 | Bias 84979605 | -9.0213e-04 | -1.3512¢:03 | 5.7772e-05
MSE 0.0017 0.0016 0.0020 0.0007
MLE 15.0008 1.4977 2.9955 0.5027
70% | 30 | Bias 0.0008 20.0023 20.0045 0.0027
MSE 0.0059 0.0049 0.0118 0.0091
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MLE 14.9993 1.5013 3.0029 0.4971
50 Bias -0.0007 0.0013 0.0029 -0.0029
MSE 0.0035 0.0086 0.0099 0.0014
MLE 14.9981 1.5005 2.9995 0.4961
100 Bias -0.0019 0.0005 -0.0005 -0.0039
MSE 0.0021 0.0014 0.0017 0.0008
MLE 15.0011 1.4979 3.0006 0.4978
150 Bias 0.0011 -0.0021 0.0006 -0.0022
MSE 0.0009 0.0008 0.0011 0.0005

Table 5. ML averages, Bias and MSE of MWE parameters based on Type Il Censored

atp =0.5.
Parameters
P N Results ¢ =15 2, =1.5 c, =3 1, =0.5
MLE 15.0468 1.5031 3.3146 0.5126
30 Bias 0.0468 0.0031 0.3146 0.0126
MSE 0.2392 0.0009 0.6042 0.0031
MLE 15.0247 1.5024 3.1965 0.5064
50 Bias 0.0247 0.0024 0.1965 0.0064
90% MSE 0.2195 0.0005 0.3317 0.0016
MLE 14.9984 1.5012 3.0864 0.5044
100 Bias -0.0016 0.0012 0.0864 0.0044
MSE 0.0974 0.0002 0.1567 0.0008
MLE 15.0030 1.5002 3.0637 0.5030
150 Bias 0.0030 0.0002 0.0637 0.0030
MSE 0.0443 0.0002 0.1052 0.0005
MLE 15.0331 1.5030 3.3339 0.5233
30 Bias 0.0331 0.0030 0.3339 0.0233
05 MSE 0.2719 0.0009 0.5828 0.0061
MLE 15.0014 1.5025 3.2351 0.5109
50 Bias 0.0014 0.0025 0.2351 0.0109
80% MSE 0.2548 0.0005 0.3992 0.0027
MLE 14.9940 1.5012 3.0779 0.5069
100 Bias -0.0060 0.0012 0.0779 0.0069
MSE 0.0618 0.0002 0.1345 0.0012
MLE 15.0024 1.5002 3.0595 0.5039
150 Bias 0.0024 0.0002 0.0595 0.0039
MSE 0.0524 0.0002 0.1066 0.0008
MLE 15.0763 1.5030 3.4335 0.5617
30 Bias 0.0763 0.0030 0.4335 0.0617
70% MSE 0.4015 0.0009 0.7830 0.0274
50 MLE 15.0011 1.5026 3.2327 0.5257
Bias 0.0011 0.0026 0.2327 0.0257
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MSE 0.1959 0.0005 0.3716 0.0083
MLE 14.9886 1.5013 3.0751 0.5123
100 Bias -0.0114 0.0013 0.0751 0.0123
MSE 0.0704 0.0002 0.1228 0.0023
MLE 15.0123 1.5003 3.0677 0.5069
150 Bias 0.0123 0.0003 0.0677 0.0069
MSE 0.0595 0.0002 0.1100 0.0014

Table 6. ML averages, Bias and MSE of MWE parameters based on Type Il Censored at

p=0.6.
Parameters
P N | Results — - —7¢ A =15 ¢, =3 1, =05
MLE | 15.0636 15029 3.26316 0.5192
30 Bias | 0.0636 0.0029 0.2631 0.0192
MSE | 02243 0.0007 0.4572 0.0056
MLE | 15.0421 15024 3.1812 0.5091
50 Bias | 0.0421 0.0024 0.1812 0.0091
-~ MSE | 0.832 0.0004 0.3030 0.0023
MLE | _ 15.0087 1.5009 3.0687 0.5068
100 Bias | 0.0087 0.0009 0.0687 0.0068
MSE | 0.0434 0.0002 0.1136 0.0012
MLE | 15.0041 15002 3.0470 0.5040
150 Bias | 0.0041 0.0002 0.0470 0.0040
MSE | 0.0372 0.0001 0.0789 0.0007
MLE | 15.0658 1.5029 3.3378 0.5532
30 Bias | 0.0658 0.0029 0.3378 0.0532
MSE | 0.2743 0.0007 0.5779 0.0220
0.6 MLE | 15.0854 15024 3.0663 0.5270
50 Bias | 0.0854 0.0024 0.2663 0.0270
- MSE | 03373 0.0004 0.4731 0.0078
MLE | 15.0065 15010 3.0696 0.5122
100 Bias | 0.0065 0.0010 0.0696 0.0122
MSE | 0.0499 0.0002 0.0873 0.0021
MLE | 15.0013 1.5002 3.0430 0.5064
150 Bias | 0.0013 0.0002 0.0430 0.0064
MSE | 0.05682 0.00011 0.0835 0.0013
MLE | 15.0954 15021 3.3493 0.6215
30 Bias | 0.0954 0.0021 0.3493 0.1215
MSE | 0.3082 0.0008 0.4777 0.0537
70% MLE | 15.0812 15021 3.2511 0.5845
50 Bias | 0.0812 0.0021 0.2511 0.0845
MSE | 0.3786 0.0004 0.3195 0.0329
100 MLE | 15.0095 15011 3.1110 0.5422
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Bias 0.0095 0.0011 0.1110 0.0422
MSE 0.0988 0.0002 0.1179 0.0146
MLE 15.0081 1.5003 3.0645 0.5217
150 Bias 0.0081 0.0003 0.0645 0.0217
MSE 0.0813 0.0001 0.0864 0.0060

6 Concluding remarks

e It is noticed, from Tables (1) and (2) that the ML averages with full samples are very
close to the initial values of the parameters as the sample size increases. Also, Bias's
and MSEs are decreasing when the sample size is increasing. This is indicative of the
fact that the estimates are consistent and approaches the population parameter values
as the sample size increases.

o |t is noticed, from Tables (3) and (4), that the ML averages with Type-I censored
samples are very close to the initial values of the parameters as the sample size
increases. Also, Bias's and MSEs are decreasing when the sample size is increasing.
This is indicative of the fact that the estimates are consistent and approaches the
population parameter values as the sample size increases.

o It is noticed, from Tables (5) and (6), that the ML averages with Type-II censored
samples are very close to the initial values of the parameters as the sample size
increases. Also, Bias's and MSEs are decreasing when the sample size is increasing.
This is indicative of the fact that the estimates are consistent and approaches the
population parameter values as the sample size increases.

¢ |t is noticed, from Table (1), (2), (3), (4), (5) and (6) that the parameters of the MWE
model are estimated by the maximum likelihood estimation method with full samples,
Type-I and Type-I1 censored samples and it shows that as the percent of censored data
Type | and Type Il increases, the estimates become more accurate which confirms that
the most accurate estimator is the maximum likelihood estimation with full sample.

7 General Conclusion

In this study, the MWE distribution was introduced based on mixture approach in order to
provide flexibility in fitting different types of data. General statistical properties were obtained.
The maximum likelihood estimation method was employed for estimating the parameters of
the proposed distribution based on complete samples, Type-I and Type-I1 censored samples.
The performances of these MLEs were tested through simulation studies. The ML estimation
method produced good estimators for the parameters of the MWE. These estimates are
consistent since Bias's and MSEs are small and decreasing when the sample size is increasing.
This study indicates that the introduced distribution MWR can offer the best fit for mixture data
in different areas.
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