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ABSTRACT: Software quality assurance is a planned and systematic approach to 
ensure that software processes and products confirms to the established standards, 

processes, and procedures. The goals of software quality assurance are to improve 

software quality by appropriately monitoring both software and the development 

process to ensure full compliance with the established standards and procedures. 
There are several models for software quality assurance, such as the ISO/IEC 90003, 

and the capability maturity model integration. As the software in today’s systems grows 

larger, it has more defects, and these defects adversely affect the safety, security, and 

reliability of the systems. Software engineering is the application of a systematic, disciplined, 
quantifiable approach to the development, operation, and maintenance of software. Quality is 

conformance to product requirements and should be free. This research concerns the role of 

software Quality. Software reliability is an important fact of software quality. It is the 

probability of failure-free operation of a computer program in a specified environment for a 

specified time. In software reliability modeling, the parameters of the model are typically 

estimated from the test data of the corresponding component. This research describes a new 

approach to the problem of software testing. The approach is based on Bayesian graphical 

models and presents formal mechanisms for the logical structuring of the software testing 

problem, the probabilistic and statistical treatment of the uncertainties to be addressed, the test 

design and analysis process, and the incorporation and implication of test results. 
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1 INTRODUCTION  
The theory of BGMs has led to many new applications of uncertainty modeling, in particular, 

to complex problems where a large number of factors contribute to overall uncertainty. BGMs 

derive from Bayesian statistical methodology, which is characterized by providing a formal 

framework for the combination of data with the judgments of experts such as software testers. 

For the application area of software testing, we demonstrate how the problem should be 
structured and how the resulting models may be used. We illustrate the methodology with 

case studies arising from applying the approach to large scale software testing problems for a 

major UK company. 
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In software reliability modeling, the parameter of the model is typically estimated from the 

test data of the corresponding component. However, the widely used point estimators are 

subject to random variations in the data, resulting in uncertainties in these estimated 

parameters. Ignoring the parameter uncertainty can result in grossly underestimating the 
uncertainty in the total system reliability to apply the models for predicting the reliability of 

the component; the parameters of the models need to be known or estimated. Field data or 

data from components with similar functionalities are usually available to help estimate these 

parameters, but the estimators are subject to random variation because they are functions of 

random phenomena. Parameter uncertainty arises when the input parameters are unknown. 

Moreover, the reliability computed from the models, which are functions of these parameters, 

is not sufficiently precise when the parameters are uncertain.  

 

2 RELATED WORK 
Sofware reliability have attracted attention from statistical researchers. However, much of  
this work attempts to fit problems related to software reliability within existing mathematical 

frameworks rather than attempting carefully to model the actual uncertainties occuring in 

software testing and the process of learning from tests. We make case studies central to the 

development of the methods described in this paper as the emphasis of our approach is in 

modeling the actual testing process and thus contributing to better testing.  

     Smidts and Sova present an approach for software reliability quantification, placing the 

functional architecture of the software centrally in their model. They suggest that their model 

"encourages a testing philosophy directed toward the triggering of failure modes and removal 

of related faults," but they do not provide further guidelines for testing at the input partition 

level. It would be interesting to consider if such, or related, models could be used in the 

process of creating BGMs for software testing.  
     Frankl et al. identify two main goals in testing software: to achieve adequate quality 

(debug testing) and to assess existing quality (operational testing). The objective for debug 

testing is to probe software for defects so that these can be removed. The objective for 

operational testing is to gain confidence that the software is reliable. They examine the 

relationship between these testing goals via a probabilistic analysis in which the effectiveness 

of testing is based on the reliability of a program after testing. Both approaches are based on 

subjective arguments: Debug testing relies on insights on where faults are likely to be; 

operational testing depends on knowledge and assumptions on operational profiles. Both 

approaches have advantages, depending on the practical situation, and both depend on 

partitioning of the input space. The BGM approach also requires partitioning the input space. 

Our partitioning is driven by focusing on differing software actions (SAs), which we regard as 
essential to test complex software. Frankl et al. carefully discuss the difficult problem of 

defining "faults" that are responsible for failures and suggest avoiding the term "bug" because 

of its often vague definition. They conclude that a formal treatment of "faults" is not available 

and suggest using "failure regions" of the input space, where one such region is a set of failure 

points that is eliminated by a program change. We stay close to this in our analysis by 

probabilistically tracking back an observed failure in the graphical model to see to which 

specific SA the cause of failure is likely related, to guide attempts to fix the fault. Detailed 

operational testing enables a statistical analysis, when based on a large number of tests, of the 

reliability of the software in operation. While we support such testing whenever possible, 

resource constraints for our applications, together with vague knowledge about operational 

profiles, often prevent us from applying such testing. However, some aspects of operational 

profiles are reflected in utilities which influence the design of test suites. 
     Regression testing is the process of testing a program after changes have been made to it to 

ensure that the changes have been effective and have not introduced further faults. For such 

testing, there already exists a set of prior test cases. It is not usually an option to rerun all of 
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these tests, so some method for regression test selection needs to be devised. Rothermel and 

Harrold evaluate current regression test methods. All of the methods analyzed are based on 

information about the source code before and after modification and yet none of the methods 

attempt to capture expert knowledge about the software and the tests. Regression testing is not 
explicitly addressed in this paper, but is deferred to a subsequent report in which we will 

demonstrate formal logical and probabilistic mechanisms for regression testing within the 

BGM approach and which enables a routine and automatic treatment of regression testing.  

     Many statistical methods have been suggested or used in attempts to create better software. 

Burr and Owen describe the possible use of methods from classical statistical quality control, 

although the adaptation to software problems is rather vague. Our first case study was far too 

complex to allow any standard classical statistical methods to be used in a straightforward 

fashion and this appears to be typical for testing problems. Singpurwalla and Wilson give 

overviews of an active area of statistical research in software reliability. Mostly, these are 

contributions to the theory of stochastic processes, linking reliability metrics to assumed 

behavior of processes with which failures occur, both while testing and in operation. They 

also discuss testing aspects related to such assumed models. While such approaches are 
potentially interesting, it seems that direct application is currently only possible to software of 

rather restricted complexity.  

     BGMs, also called Bayesian belief networks (BBN), have been applied to different 

problems on software quality. Neil and Fenton use them to predict software quality, taking 

into account a diversity of factors such as effort and complexity of design, skills of people 

involved in the process of development and testing, and costs. While this is an interesting 

approach to give an overall idea of the density of defects in a piece of software, these BBNs 

are not aimed directly at assisting testers. The most typical use of BBNs in this application 

area is in inferring models for reliability from large databases. The SERENE project 

(http://www.hugin.dk/serene/) presents interesting applications of BBNs in the area of safety 

and risk evaluation and some of the work within this project also takes software into account 
albeit without actual support at the test design level. Our usage of BGM rather than BBN 

reflects the terminology used in the wider statistics literature and helps to emphasize that our 

BGMs model testers' judgments and are not the results of inferring models from large 

databases. 

 

3 SOFTWARE RELIABILITY AND ITS PROBLEM  
Reliability is usually measured based on probability theory and, in general, mathematical 
statistics are used to estimate these probabilities. Reliability engineering is an important 

aspect of many system development efforts and consequently there has been a great deal of 

research in the software based systems. One important activity included in reliability 

engineering is reliability prediction. To control a complex industrial process, many 

heterogeneous components are needed to work together with highest reliability. The 

integration of heterogeneous components into mechatronics systems requires broadening the 

concepts and cooperation between different technical disciplines involved to develop a 

common conception of the future product and come up with an optimized solution. So the 

complexity of mechatronics system is to be broken by extracting the basic fundamental 

function of the different units. So, it is needed to abstract the reliability related peculiarities 

from each discipline and unify them in a way suitable for mechatronics as whole. The 
reliability definition stresses four elements namely i. probability ii. Intended functions iii. 

Time iv. Operating conditions.  

The numerical evaluation of reliability is based on the total duration of failures or the 

frequency of failures. So, most benefit from the use of reliability can be achieved at the early 

phases of the design of programmable mechatronics system to identify the adequate 
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confidence about the systems and its components. The reliability analyses of various 

components involved in software based systems can be broadly classified in to  

a. Software component reliability.  

b. Interface and networking reliability.  
c. Software controlled hardware reliability.  

 

It has been noted that reliability of the large scaled electro-mechanical systems should be 

properly evaluated based on the subsystems reliability.  

Definition for software “Set of programs, procedures and its related documentation for 

delivery to a customer. Software Quality deals with “fitness of Use” and “Satisfies user 

requirement”. IEEE defines software quality as a software feature or Characteristic used to 

assess the quality of a system. Software Quality is measured in different ways, using internal 

parameters, and external attributes. Software reliability is Quality factor. Parameter definition 

is very important in Reliability. System level  improved reliability factor is hard to find.  

 

4 LITERATURE SURVEY  
Software reliability models consider different elements of the software project, such as the 

specification & codification of the programs, or information about the fault detection & 

correction process. They are usually based on characteristics of the testing activity, and are 

classified according to the assumptions that each model does in its formulation. The 

parametric and traditional models assume in their analytic formulation a predetermined 

behavior where some parameters have to be adjusted, fitting the curve to the failure data. 

Their parameters are explicitly defined in the model, and have a physical interpretation. To 

adjust the parameters of the parametric models, there is always a set of assumptions that may 

not be suitable for most cases. The influence of external parameters and other peculiarities of 
a model can be eliminated if we have a model that is able to evolve itself based on the failure 

data collected during the initial test phase. Although they include parameters in their 

analytical formulation, they are also known as non-parametric reliability models because 

these parameters do not have a physical interpretation.  

Reliability is frequently related to the probability of a failure occurring in the operational use 

of the system. Software systems are usually not considered to wear out with time. The only 

external factors that determine the output of a program are the input data. Faults in the 

software are essentially originated by human mistakes, such as a wrong specification, or 

instruction in the code. When a failure occurs, faults should be located & removed, so the 

system reliability tends to increase. Software reliability models are used to describe this 

process. They allow the estimation or prediction of the present or future reliability of a 
system.   

Software qualities well known models are McCall, Boehm, FURPS .The following sections 

will discuss briefly on models:  

 

4.1 The McCall model (1977)  
       The McCall model is constructed using tree-like fashion. This model holds quality factors 

usability which will be quantified. In this model Quality factors are not directly measured and 

set of metrics is needed to develop relationship.  

 

4.2 The Boehm model (1978)  
       The Boehm model represents a hierarchical structure of characteristics, each of which 

contributes to total quality. Utility is broken in to different levels. This model is not 

considered for higher level.  

 

4.3 The FURPS model (1987)  
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Hewlett-Packard developed a set of software quality factors that make up its name FURPS.It 

takes Functionality, Usability, Performance and supportability. Disadvantage of this model is 

that it does not take into account the software product’s portability.  

 

4.4 The Systemic Quality Model (2003) The systemic model is differed from the 

previous model mentioned above. This model is developed by identifying the relationship 

between product-process, efficiency-effectiveness and user-customer to obtain global 

systemic quality. The model proposed focuses on product quality, which includes efficiency 

and effectiveness and the concept of systemic global quality. The disadvantages of this model 

are that it does not cover the user requirements and conformant aspects. Analysis done on the 

different models demonstrates that different quality characteristics associated with these 

different models. 
 

5 QUALITY SAFE GROWTH MODEL   
In semi-supervised learning, decision rule is to be learned from labeled and unlabeled data. In 

this framework, we motivate minimum entropy regularization, which enables to incorporate 

unlabeled data in the standard supervised learning. Our approach includes other approaches to 

the semi-supervised problem as particular or limiting cases. A series of experiments illustrates 

that the proposed solutions benefit from unlabeled data. Another characteristic challenge in 

software testing and reliability is the lack of available failure data from a single test, which 

often makes modeling difficult. This lack of data poses a bigger challenge in the uncertainty 

analysis of the software reliability modeling. The existing semi-supervised learning 

techniques are all not very effective for our case of lack of failure date.   
 

5.1 Objective  
The objective is to quantify the uncertainties in the software reliability model of system with 

correlated parameters. Challenges in software reliability is the lack of available failure data 

from a single test, which often makes modelling difficult. Using that data poses a bigger 

challenge in the uncertainty analysis of the software reliability modelling. For achieving good 

quality, we use reliability model using Bayes approach with TQM.  

 

5.2 RF Approach  
RF (Reliability Factor), Reliability is the probability of a device performing its purpose 

adequately for the period intended under the given operating conditions. The definition brings 

into focus four important factors namely,  

 

i. The reliability of a system is expressed as a probability.  

ii. The system is required to give adequate performance.  

iii. The duration of adequate performance is specified.  

iv. The environmental or operating conditions are prescribed.  

 
Reliability is usually measured in terms of probabilities. The theory of Bayesian statistics is a 

well established and the method has been applied in various areas including software, 

automation systems, medical diagnosis, geological explorations etc.  

In the software based system, the uncertain variables are associated to each component where 

the uncertainty is expressed by probability density. The probability density expresses our 

belief or confidence in the various possible outcomes of variable. This probability depends 

conditionally on the status of other component based on different input.  

The probabilities are estimated by means of statistical methods. Various statistical methods 

are available for estimating the reliability of the system, but these methods are not suitable for 

estimating the reliability of software based system, because, these methods have not 
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considered the uncertainties of unknown parameters. The Bayesian statistical method 

considers the uncertainties of unknown parameters. So, Bayesian model is mainly used for 

estimating the reliability of software-based systems. This method is also used to predict the 

future of the system by the observed information.   
Reliability is the probability that a system will operate without failure for a given time in a 

given environment. Note that reliability is defined for a given environment.  

Since the test and operations environments are generally different, model results from test 

data may not apply to an operations environment. The "given time" in this definition may 

represent any number of actual data items, such as number of executions; number of lines of 

code traversed, or wall clock time.  The use of a model also requires careful definition of what 

a failure is. Reliability models can be run separately on each failure type and severity level. 

Models have been developed to measure, estimate and predict the reliability of computer 

software. Software reliability has received much attention because reliability has always had 

obvious effects on highly visible aspects of software development: testing prior to delivery, 

and maintenance. Early efforts focused on testing primarily because that is when the problems 

appeared. As technology has matured, root causes of incorrect and unreliable software have 
been identified earlier in the life cycle. This has been due in part to the availability of results 

from measurement research and/or application of reliability models.  

 

Step 1. Take a prior factor p(a) with respect to a certain parameter, given a set of newly 

observed data.  

Step 2. Using the newly observed data, estimate the parameter ‘f’.  

Step 3. Derive g=∫ f’/4 by using that formulae.   

Step 4.  Compare the values ‘f’ and ‘g’.  

Step 4. If (f < g) or (f > g), the adjustment should be triggered. The estimated parameter ‘E’ is 

located at the extreme tails of the prior distribution.  

Step 5. Adjust the degree factor d* for filtering and then recalculating the prior distribution 
and then repeat Step 1.  

 

5.3 Measure Information 
It can be used to approach physical systems from the point of view of information theory, 

because the probability distributions can be derived by avoiding the assumption that the 

observer has more information than is actually available. Information theory, particularly the 

definition of information in terms of probability distributions, provides a quantitative measure 

of ignorance (or uncertainty, or entropy) that can be maximized mathematically to find the 

probability distribution that is maximally unbiased Entropy. 
If any of the probabilities is equal to 1 then all the other probabilities are 0 and we then know 

exactly which state the system is in. Since probabilities are used to cope with our lack of 

knowledge, and since one person may have more knowledge than another, it follows that two 

observers may, because of their different knowledge, use different probability distributions. In 

this sense probability, and all quantities that are based on probabilities, are subjective.  

`Our uncertainty is expressed quantitatively by the information which we do not have about 

the state occupied. This information is  

 

K= ∑p (Ti+Tj) log2 (1/p (Ti) +j (Ti))                         (1)  

      i,j 

L=∑ (p (Ti+Tj)*g (Ti+Tj )                                           (2) 

     i,j 
Information is measured in bits because we are using logarithms to base 2. One person may 

have different knowledge of the system from another, and therefore would calculate a 

different numerical value for entropy. The Principle of Maximum Entropy is used to discover 
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the probability distribution which leads to the highest value for this uncertainty, thereby 

assuring that no information is inadvertently assumed.  

 

5.4 Reliability Model for All Modules of a System 
The system reliability can be evaluated using the architecture and relationship of the 

components.  

The Markov model, SPN, fault tree analysis, and reliability block diagram are some popular 

tools for evaluating the system reliability, given the parameters of its contained components. 

For example, a Markov chain is characterized by its state space, together with the transition 

Probabilities over time between these states. Usually, there are four steps to construct and 

solve the Markov chain models:  

 

1. Set up the Markov chain model.  

2. List the Chapman-Kolmogorov equations.  
3. Solve those equations to obtain state probabilities.  

4. Obtain the reliability by summing up the probabilities of those reliable states.  

  

Choose prior distributions based on previous knowledge either the results of earlier studies or 

non-scientific opinion.  

Modern Parametric Bayesians and the normal model with unknown mean and variance  

• Consider r and t2 are unknown random variables.  

Bi ~ n(r , t2)                                                                 (3)  

• we used the definition of conditional probability, so  

p (r ,(IL+t2) = p(r|(IL+t2)p(IL+t2)?                             (4)  

• This is a conjugate distribution for the normal distribution with unknown mean and 
variance; the posterior distribution will also be normal-Inv-X2.  

In the previous sections, we have analyzed the parameter uncertainty of reliability model for 

one component based on Entropy and Bayes. Complicated software contains multiple 

modules. Many tools can be implemented to evaluate the system reliability, given the 

parameters of its contained components, such as the Markov models, Bayesian Network, 

Graph Theory, and Fault-Tree Analysis. Regardless of the tools used, the system reliability is 

a function combining the parameters of its components. As a result, the uncertainties in the 

parameters affect the whole system reliability. The purpose of this section is to study and 

quantify the uncertainty in the reliability of the complex system due to the uncertainty of the 

parameters in the numerous components of the system. Some general assumptions of the 

system-level analysis are listed as follows:  
 

1. Consider system contains different modules.  

2. Each module has its own reliability model and let j denote the set of parameters for the ith     

module’s model, where j = 1; 2. .  . K.  

3. For each module, the probability distribution of its model’s parameters is known, which can 

be derived using  formula2 and 4.  

4. The failures of different components are‘d’ independent, the system reliability can be 

   Calculated by the function of modules Parameters as d = f (v1, v2,……, vj).  

Based on the above assumptions, an MC simulation is presented for generally analyzing the 

uncertain system reliability. It is difficult to use analytic methods for combining the 

distributions of numerous parameters to derive the probability density function of the system 

reliability, especially for complicated systems with complex architecture and many 
components. Hence, the MC simulation becomes a practical way to make the uncertainty 

analysis of the complicated system tractable. Algorithm 1 provides a general MC approach for 

the uncertainty analysis in a complicated system. 
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5.5 Infromation Validation 
The posterior distributions validate the posterior of modules by using the following method: 

 ● Calculate the mean values of the posterior distributions and obtain parameters. 

●  Using, these parameters can be applied to the test. 

●  Compare the predicted TimeToFailures with the real observed TimeToFailures, by 

calculating the mean square error. M (t) =b(1-exp(-¢(t)), a>0 (5) 

●  If the mean square error m(t)>d(Threshold value)is then the model does not fit the 

observed data. 

● The adjustment (such as trying another model or further filtering the subjective information) 

should be applied. 

 

 

Table 1: Frequency Table 

 

5.6 Safe Growth Model Quality Values 

 

Table 2: Reliability Model Values 

 

6 PERFORMANCE MEASURES 

 
 

 

 

 Model    

Failure Number  Failure Interval Length  Day of Failure  

1  5  1  

2  73  1  

3  141  1  

4  491  5  

5  5  5  

6  5  5  

7  28  5  

8  138  5  

9  478  9  

10  325  9  

k  L  p(r ,(IL+t2)  m(t)  Rank  RealibiltyValue  

0.981309  0  0  662.0769  242.4507  0.073452884  

23.55142  0  0  391.2273  245.9143  0.936789997  

1.358736  0  0  358.625  296.7931  0.911564803  

1.59917  12.5  12.5  17214  344.28  0.911564803  

3.140189  0.5  0.5  3442.8  344.28  0.595401972  

6.476639  0.073964  0.073964  662.0769  358.625  0.677649082  

2.564065  0.198217  0.198217  637.5556  358.625  1.43E-04  

6.476639  2.42  2.42  1721.4  358.625  0.902433272  

72.61686  15.68  15.68  3442.8  358.625  0.665728529  

24.94034  1.300728  1.300728  555.2903  358.625  0.825561533  
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Figure 7: Reliability prediction and comparative Analysis. 

In general, the reliability of the system decreases as time increases but the reliability of 

posterior mean always lies above the mean of MLE. Both point estimate methods of MLE and 

posterior mean can predict a close reliability trend, so the new method using the posterior 

mean can be an alternative way for the point estimate of the parameters. More importantly, 

using the posterior probability distribution, we can further analyze the uncertainty of the 

predicted reliability. In addition, the confidence intervals depend on both the prior distribution 

and the new observations. 
 

 

 

 

 

 

 

 

 

 

 
 

 

Figure-8: System Reliability Analysis 

 

From the analytical results of uncertainty analysis in Fig. 8, we find that, during the initial 

period of the reliability prediction, the system reliability is high, indicating that the 

uncertainty of the software reliability is low. Then, the confidence interval increases and 

reaches the maximum around the middle part. At the latter part, the mean value of system 

reliability is also small so that the comparative uncertainty is still large. 

 

6. CONCLUSIONS  
We have described an approach to the probabilistic modeling and analysis of software 

systems. In This proposed work gives the solution for uncertainty problems in reliability 

modeling on system level. This safe growth model solves the challenges for the dearth of data 

by using quality factors. From the similar models, we have taken expert knowledge, historical 

data, and developmental environments .This expert knowledge involved in analyzing the 

uncertainty and for compensating insufficient failure data. After analyzing the problem, this 

work further extends to more complicated systems that contain numerous components, each 

with its own respective distributions and uncertain parameters. The model that we have 

described exploits the expert judgments of the tester. If these judgments are overly simplistic, 

then the model will not give a good representation of the faults in the software. In such cases, 
the model will still improve on the analysis of the tester, but with the additional advantage 

that the various assumptions of the tester may be explicitly scrutinized within the model by 

the model diagnostics for the BGM. These diagnostics are based on discrepancies between the 
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actual test behavior and the predicted behavior according to the model; for example, the 

prediction of few faults in a given subarea might be contradicted by observation of several 

faults in that area. Finally, note that the BGM approach captures, as far as is deemed 

practicable, the expertise of the tester and maintains it in usable form as a knowledge base. 
This represents a considerable resource to the software owner, who is routinely faced by the 

problem of the expertise of a tester being lost due to everyday practicalities such as personnel 

changes. The relevance of the BGM approach to support software testing, from a management 

perspective, is addressed inwhich also considers the circumstances under which this approach 

has been developed. In a future paper, we shall address how we may assess the viability of the 

approach in terms of the scale and complexity of the software to be tested. 
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