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Abstract 

 
The paper examined the thermal radiation effect on unsteady megnetohydrodynamic flow 

past a vertical porous plate with variable suction is analyzed. The non dimensional governing 

equations are formed with the help of suitable dimensionless governing parameter. The resultant 

coupled non dimensional governing equations are solved by a finite element method. The 

velocity, temperature and concentration distributions are derived, discussed numerically and their 

profiles for various values of physical parameters are shown through graphs. The coefficient of 

skin-friction, Nusselt number and Sherwood number at the plate are derived, discussed 

numerically and their numerical values for various values of physical parameters are presented 

through Tables. It is observed that, when the radiation parameter increases the velocity and 

temperature increase in the boundary layer. Also, it is found that as increase in the magnetic field 

leads to decrease in the velocity field and rise in the thermal boundary thickness. 
 

Keywords: Thermal Radiation, MHD, Porous plate, Variable suction, FEM. 
 
1. INTRODUCTION  
 

Radiation and on the optical properties of the emitter, with its internal energy being converted to 

is the process of heat propagation by means of electromagnetic waves, depending only on the 

temperature radiation energy. The process involving the convection of internal energy of the 

solution in to radiation energy is known as radiation heat transfer. In contrast to the mechanism 

of conduction and convection, where energy transfer through a material medium is involved, 

heat also be transferred through regions where a perfect vacuum exists. The mechanism in this 

case is electromagnetic radiation. The electromagnetic radiation which is propagated as a result 

of temperature differences, this is called thermal radiation.  
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Convective heat transfer in a porous media is a topic of rapidly growing interest due to its 

application to geophysics, geothermal reservoirs, thermal insulation engineering, exploration of 

petroleum and gas fields, water movements in geothermal reservoirs, etc. The study of 

convective heat transfer mechanisms through porous media in relation to the applications to the 
 
above areas has been made by Nield and Bejan [19] . Kafousias et al [7] have studied unsteady 

free convective flow past vertical plates with suction. Hossain and Begum [5] 
 
have discussed unsteady free convective mass transfer flow past vertical porous plates. MHD 

convective flow of a micro-polar fluid past a continuously moving vertical porous plate in the 

presence of heat generation/absorption was studied by Rahman and Sattar [12]. Recently, the 

study of free convective mass transfer flow has become the object of extensive research as the 

effects of heat transfer along with mass transfer effects are dominant features in many 

engineering applications such as rocket nozzles, cooling of nuclear reactors, high sinks in turbine 

blades, high speed aircrafts and their atmospheric reentry, chemical devices and 
 
process  equipments.   Unsteady effect on MHD free convective and mass transfer flow through 
 
porous medium with constant suction and constant heat flux in rotating system studied by 

Sharma [15]. But in all these papers thermal diffusion effects have been neglected, whereas in a 

convective fluid when the flow of mass is caused by a temperature difference, thermal diffusion 

effects cannot be neglected. In view of the importance of this diffusion-thermo effect, Jha and 

Singh [6] presented an analytical study for free convection and mass transfer flow past an infinite 

vertical plate moving impulsively in its own plane taking Soret effects into account. In all the 
 
above studies,  the  effect  of  the  viscous  dissipative  heat  was  ignored  in  free-convection 
 
flow. However,  Gebhart  and  Mollendorf  [3]  have  shown  that  when  the temperature 
 
difference is small or in high Prandtl number fluids or when the gravitational field  is  of  high 

intensity, viscous  dissipative  heat  should  be taken  into  account in  free convection flow past 

a semi-infinite vertical plate. The unsteady free convection flow of a viscous  incompressible 

fluid  past an  infinite  vertical  plate  with constant  heat  flux is considered on taking into 
 
account viscous dissipative heat, under the influence of a transverse magnetic field studied by 
 
Srihari. K et al [16]. Ramana Kumari and Bhaskar Reddy [13] have studied  a two-dimensional 

unsteady   MHD  free  convective  flow of  a  viscous incompressible electrically conducting 

fluid past an infinite vertical porous plate with variable suction. Suneetha [17] examined the 

problem of radiation and   mass transfer effects on MHD   free convection flow   past   an 
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impulsively started isothermal vertical plate with dissipation. The effect of temperature 

dependent viscosity and thermal conductivity on unsteady MHD convective heat transfer past a 

semi-infinite vertical porous plate has studied Seddek and Salama [14]. In recent years, progress 

has been considerably made in the study of heat and mass transfer in magneto hydrodynamic 

flows due to its application in many devices, like the MHD power generator and Hall accelerator. 

The influence of magnetic field on the flow of an electrically conducting viscous fluid with mass 

transfer and radiation absorption is also useful in planetary atmosphere research. Kinyanjui et al. 

[8] presented simultaneous heat and mass transfer in unsteady free convection flow with 

radiation absorption past an impulsively started infinite vertical porous plate subjected to a 

strong magnetic field. Yih [18] numerically analyzed the effect of transpiration velocity on the 

heat and mass transfer characteristics of mixed convection about a permeable vertical plate 

embedded in a saturated porous medium under the coupled effects of thermal and mass diffusion. 

Elbashbeshy [2] studied the effect of surface mass flux on mixed convection along a vertical 

plate embedded in porous medium. Chin et al. [1] obtained numerical results for the steady 

mixed convection boundary layer flow over a vertical impermeable surface embedded in a 

porous medium when the viscosity of the fluid varies inversely as a linear function of the 

temperature. Pal and Talukdar [11] analyzed the combined effect of mixed convection with 

thermal radiation and chemical reaction on MHD flow of viscous and electrically conducting 

fluid past a vertical permeable surface embedded in a porous medium is analyzed. 

Mukhopadhyay [9] performed an analysis to investigate the effects of thermal radiation on 

unsteady mixed convection flow and heat transfer over a porous stretching surface in porous 

medium. Hayat et al. [4] analyzed a mathematical model in order to study the heat and mass 

transfer characteristics in mixed convection boundary layer flow about a linearly stretching 

vertical surface in a porous medium filled with a visco-elastic fluid, by taking into account the 

diffusion thermo (Dufour) and thermal-diffusion (Soret) effects. 

 
 
The object of the present paper is to study the thermal radiation effect on unsteady 

magnetohydrodynamic flow past a vertical porous plate with variable suction. The problem is 

governed by the system of coupled non-linear partial differential equations whose exact solutions 

are difficult to obtain, if possible. So, Galerkin finite element method has been adopted for its 

solution, which is more economical from computational point of view. 



www.aasrc.org/aasrj     American Academic & Scholarly Research Journal     Vol. 4, No. 3 May 2012 

 
 
2. FORMULATION OF THE PROBLEM 
 

An unsteady two-dimensional laminar free convective boundary layer flow of a viscous, 

incompressible, electrically conducting and the chemical reaction effects on an unsteady 

magnetohydrodynamics free convection fluid flow past a semi-infinite vertical plate embedded 

in a porous medium with heat absorption is considered. The x  - axis is taken along the vertical 

plate and the y - axis normal to the plate. It is assumed that there is no applied voltage, which 

implies the absence of an electric field. The transverse applied magnetic field and magnetic 

Reynolds number are assumed to be very small so that the induced magnetic field and the Hall 

Effect are negligible. The concentration of the diffusing species in the binary mixture is assumed 

to be very small in comparison with the other chemical species which are present, and hence the 

Soret and Dufour are negligible. Further due to the semi-infinite plane surface assumption, the 

flow variables are functions of normal distance y and t  only. Now, under the usual 

Boussinesq’s approximation, the governing boundary layer equations of the problem are: 

Continuity equation: 

v  0                   (1) 
 

y                     
 

Momentum equation:                
 

u   u    
2
 u          B0

2
     

 

 

v   

v  

g T   T  g C  C   

 

    

u  (2)            

     2       
       

 

t   y   y              K   
 

Energy equation:                
 

T    T   k 
2
T   1  q  u 

2
 Q        

 

 
v 

         
  

 0 T   T    
 

               

     2             (3) 
 

t   y c p    y  k y c p     y c p       
 

Diffusion equation:                
 

C   v  C   D  
2

 

C
 


  K r 2 C            (4) 

 

t   y   y  
2
               

 

 Where u, v are the velocity components in  x , y directions respectively.  t  - the time, 
 

 -the fluid density,  - the kinematic viscosity, cp - the specific heat at constant pressure, g -the 
 

 

acceleration due to gravity,  and  

 - the thermal and concentration expansion coefficient 

respectively, B0 - the magnetic induction ,  - the fluid thermal diffusivity, K - the permeability 
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of the porous medium, T  - the dimensional temperature, C - the dimensional concentration, k - 

the thermal conductivity,  - coefficient of viscosity, D - the mass diffusivity. 

The boundary conditions for the velocity, temperature and concentration fields are: 
 

u  u ,  T  T  T   T  e 
nt

 ,  C C (C  C )e 
nt

 at   y  0   
 

p ww w w  


   

(5)          
 

u 0,  T  T  , C  C   as   y  
 

         
 

Where  up is  the plate  velocity, Tw and C w are  the wall  dimensional temperature  and 
  

concentration  respectively, C  are  the  free  stream  dimensional  temperature  and 
 

concentration respectively, n - the constant. By using Rossel and approximation, the radiative 

heat flux q is given by 
 

q 
4 s T 

4
 

(6) 

 

3ke y 
 

 
 

 

Where  s -the Stefan-Boltzmann constant and ke - the mean absorption coefficient. It 

should be noted that by using Rossel and approximation, the present analysis is limited to 

optically thick fluids. If temperature differences within the flow are sufficient, small, then 

equation (6) can be linearised by expanding T 
4
 in the Taylor series about T , which after 

neglecting higher order terms take the form 

T 
4
   4T

3
T  3T

4
 

 
In view of equations (6) and (7), equation (3) reduces to 
 

T  T  k 
2
T   16  

2
T  u 

2
 

 

 
 v 


       s 

T 3    


  

 

      

   2    2   
 

t  y  c p  y  3 c p ke y  c p    y 
 

 
(7) 
 
 

 

(8) 

 
T and 
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From the continuity equation (1), it is clear that suction velocity normal to the plate is either a 

constant or function of time. Hence, it is assumed in the form  

vV0 1   Ae 
nt

 

  (9) 

Where A is a real positive constant, ε and εA are small values less than unity and V0 is scale of 
 
suction velocity at the plate surface. 
 
In order to write the governing equations and the boundary condition in dimension less form, the 

following non- dimensional quantities are introduced.  

 

u   V y V 
2
t   up n  T T   

 

u ,  ,  y   
0 , t   

0 , U p  ,  n , T    


 ,  
 

V  V   4   V   V 
2  T T   

 

 0  0      0  0   w   
 

    C C  2  K  V 2  c p 
     

 

    B          
 

Sc    

, C   
  , M  0

    , K   0  
,  Pr    

  , 
 

(10)             

 D  C C  V 
2   

2     k  
 

 
 

    w   0             
 

  g  v T   T   g  

v C C    16   T 

3
      

 

G  
 w 

,Gc  
w 

, R  
  


 s          

 

  

   

3  

3             

        

3ke k 
       

 

   V0   V0             
  

In view of equations (6) - (9), equations (2) - (4) reduced to the following dimensionless form. 

1 u  it   
u

    
2
u 1  

 

4 t 
 1  Ae    

y 
 GT  GC C  

y 
2    M  

 

u 
  

  
 

      K (11)  
           

 

1 T  it T1  R  
2
T      

 

 

 1  Ae     
 

2 
      

       
 

4 t   y Pr y     (12)  
            

1 C  it C1  
2
C      

 

4 t  


 

1
 
Ae

ySy2     
(13) 

 

     C      
 

and the corresponding boundary conditions are    
 

t  0 : u  0, T  1  e
it

 , C  1 at y  0  
 

u  0, T  0 , C  0   as y' (14) 
 

 
 
 
3.  METHOD OF SOLUTION 
 
 

 

The Galerkin expansion for the differential equation (12) becomes 
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yK (e)T
2
u

(e)
 u(e)  1 u(e) 

(e)   
 

∫ 
N  

       

 

  

         

 

y 
2     B 

y 
 
4  t 

 Nu    R1   dy  0  
 y

J      (15)  
           

Where          
 

 R   G T  G  C,  B  1  Ae 
it

   
 

 1   C       
 

 N  M  
1

 , A  1  R    
 

   K   Pr    
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Let the linear piecewise approximation solution 
 

u 
(
 
e
 
)
   N j ( y)u j (t)  N k ( y)uk (t )  N j u j   N k uk 

 
Where 
 

N j   
y

k
  


 
y

 ,  N k   
y  y T N 

 

j   ,  N (e)  N j N k 
T
  j 

 

yk   y j yk   y j  
N

 k 
 

The Galerkin expansion for the differential equation (16) becomes 
 

 

 (e ) 
y

K   (e )
T (e)  (e)   (e)    

 

(e)
T  u y

KN u (e)
Tu  1 u (e )   

 

   
∫ 

   

 

     

 

  

             

N       NB     Nu    R1     dy  0  
 

 y  
y

 j  y y y  4  t    
 

  
y

 j            (16) 
 

 

 

Neglecting the first term in equation (17) we gets 
 
  (e )

T (e)  (e )   (e )   
 

y
KN u (e)

Tu  1 u (e)  
 

∫ 
   

 

     

 

 

         

    NB     Nu    R1     dy  0 
 

y j  y y y  4  t   
 

           
 

 

 

1    1    1  u jB  1 1  u jl(e )    2 1   u 

j  Nl 

(e
 
)
    2 

 

 

 

 
 

 

 
 

  

 

 
 

 

 

     
 

l (e)  1   1   u 2  1 1  u 24  1 2   u  61 
 

  k   k   k    

            
 

 

 

1   u j  
 

R
1 

2
 

u
k 

 

 

l(e )   1 
 
2  1 

 

 

Where l 
(e)

   yk   y j  h and dot denotes the differentiation with respect to t .     
 

We write the element equations for the elements  yi1  y  yi and y j  y  yk assemble three 
 

element equations, we obtain              
 

 1   1   0   ui1  1   1              
 

  0  ui1 2 1 0  ui1  2  1 0  ui1  1   

1     B   1   N    
R

1  
 

2  1   2   1   ui   1   0 1   ui  1 4 1   ui 1   4 1   ui   2  
 

l (e)     2l 
(e)   24    6    2  

 

                   
 

 
01   1u

i1  0   1 1
  
u

i1 0 1 2
  
u

i1 0  1 2
  
u

i1  1 (17)                    
 

 
 
 

 

Now put row corresponding to the node i to zero, from equation (17)  the difference schemes is 
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1     B     1  N 
 

 

 ui1  2ui   ui 1  
 

( e ) [ui1  ui 1 ] ui

14ui

ui

1uI14uiui1R1 

 

( e )
2  

 

l    2l      24  6 
 

Applying Crank-Nicholson method to the above equation then we gets 
 

A u 
j
 
1

   A u 
j
 
1

   A u 
j
 
1

   A u 
j
  A u 

j
   A u 

j
     R 


   

 

1   i 1 2   i 3   i 1  4   i 1  5   i 6   i 1   
 

Where            
 

A1   1 12r  6Brh  2 Nk    A2  4  24r  8Nk A3  1  12r  6Brh  2 Nk 
 

A4  1  12r  6Brh  2 Nk   A5  4  24r  8Nk A6  1  12r  6Brh  2 Nk 
 

R 

   24 (G  ) kT i 

j
   24 (Gc ) kC i 

j
      

 

Applying similar procedure to equation (11) and (12) then we gets  
 

B T 
j
 
1

  B T 
j
 
1

  B T 
j
 
1

   B T 
j
  B T 

j
   B T 

j
   

 

1  i1 2   i 3   i1   4   i1  5   i  6   i1   
 

C C 
j
 
1

   C C 
j
 
1

   C C 
j
 
1

   C C 
j
  C C 

j
   C C 

j
   

 

1   i 1 2    i 3    i1   4    i 1 5    i 6    i 1   
 

Where            
 

B1  1 12 Ar  6Brh B2  4  24 Ar     
 

B3  1 12Ar  6Brh, B4  1 12Ar  6Brh   
 

B5   4  24Ar,  B6  1 12Ar  6Brh   
 

C1   S C  12r  6BS C rh  C2   4SC   24r   
 

C3   SC  12r  6BSC rh,    C4   SC  12r  6BSC rh   
 

C 5   4 S C   24 r ,   C 6   S C   12 r  6 BS C rh   
 

 
 
 
 
 
 
 
 
 

 

(18) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(19) 

 

(20) 
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Here r  
k

 and h, k are the mesh sizes along y -direction and time t -direction respectively. h 2 

 
Index i refers to the space and j refers to the time. In Equations (18)-(20), taking i = 1(1)n and 

using initial and boundary conditions (14), the following system of equations are obtained: 
 
i  1(1)3 
 

Where Ai ’s are matrices of order n and X i , Bi ’s column matrices having n − components. The 

solutions of above system of equations are obtained by using Thomas algorithm for velocity, 

temperature and concentration. Also, numerical solutions for these equations are obtained by C-

program. In order to prove the convergence and stability of finite element method, the same C-

program was run with slightly changed values of h and k and no significant change was observed 

in the values of u,T and C . Hence, the finite element method is stable and convergent. 

 
 
 

 

4.  SKIN FRICTION 
 
The skin-friction, Nusselt number and Sherwood number are important physical parameters 

for this type of boundary layer flow. The skin friction, rate of heat and mass transfer are 

 
Skin friction coefficient ( C f  ) is given 
 
 
 
Nusselt number ( Nu ) at the plate is 
 
 
 
Sherwood number ( Sh ) at the plate is 

 

by 
 u 

 

    
 

 C f    
 

   
y

y0 
 

    
 

Nu   
T  

 

    
 

 
y

y0 
 

 C  
 

     
 

Sh     
 

 y y 0  

     

 
(21) 
 
 
 
(22) 

 
 
 

(23) 

 
 
 
 

 

5.  RESULTS AND DISCUSSION 
 
 

 

As a result of the numerical calculations, the dimensionless velocity, temperature and 

concentration distributions for the flow under consideration are obtained and their behaviour 

have been discussed for variations in the governing parameters viz., the thermal Grashof number 

 
Ai X i   Bi 
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G  , modified Grashof number GC , magnetic field parameter M , permeability parameter K , Prandtl 

number P , Thermal Radiation Parameter R and Schmidt number S C . In the present study we 

adopted the following default parameter values of finite element computations: 

G  5.0, Gc  5.0, M  1.0, K  5.0, Pr  0.71, R  1.0, Sc  0.6, A  0.01,   0.002,   1.0, t 

1.0 . All graphs therefore correspond to these values unless specifically indicated on the appropriate 

graph. 

 

 

Fig 1 presents typical velocity profiles in the boundary layer for various values of the Grashof 

number G  , while all other parameters are kept at some fixed values. The Grashof number G  

defines the ratio of the species buoyancy force to the viscous hydrodynamic force. As expected, 

the fluid velocity increases and the peak value is more distinctive due to increase in the species 

buoyancy force. The velocity distribution attains a distinctive maximum value in the vicinity of 

the plate and then decreases properly to approach the free stream value. 

 
 

The influence of the modified Grashof number GC on the velocity is presented in Fig 2. The 

modified Grashof number signifies the relative effect of the thermal buoyancy force to the 

viscous hydrodynamic force in the boundary layer. As expected, it is observed that there is a rise 

in the velocity due to the enhancement of thermal buoyancy force. Here, the positive values of 
 
GC correspond to cooling of the plate. Also, as GC increases, the peak values of the velocity increases 

rapidly near the porous plate and then decays smoothly to the free stream velocity. 

 

For various values of the magnetic parameter M , the velocity profiles are plotted in Fig 3. It can 

be seen that as M increases, the velocity decreases. This result qualitatively agrees with the 

expectations, since the magnetic field exerts a retarding force on the flow. The effect of the 

permeability parameter K on the velocity field is shown in Fig 4. An increase the resistance of 

the porous medium which will tend to increase the velocity. This behavior is evident from Fig 4. 

 
 
 
 
Figs 5(a) and 5(b) illustrate the velocity and temperature profiles for different values of the 

Prandtl number P . The Prandtl number defines the ratio of momentum diffusivity to thermal 
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diffusivity. The numerical results show that the effect of increasing values of Prandtl number 

results in a decreasing velocity (Fig 5(a)). From Fig 5 (b), it is observed that an increase in the 

Prandtl number results a decrease of the thermal boundary layer thickness and in general lower 

average temperature within the boundary layer. The reason is that smaller values of P are 

equivalent to increasing the thermal conductivities, and therefore heat is able to diffuse away 

from the heated plate more rapidly than for higher values of P . Hence in the case of smaller 

Prandtl numbers as the boundary layer is thicker and the rate of heat transfer is reduced. 

 
 
For different values of the radiation parameter R , the velocity and the temperature profiles are 

shown in Figs 6(a) and 6(b). It is noticed that an increase in the radiation parameter results a 

decrease in the velocity and temperature within the boundary layer, as well as decreased the 

thickness of the velocity and temperature boundary layers. 

 
 

The influence of the Schmidt number S C on the velocity and concentration profiles are plotted in 

Figs 7(a) and 7(b) respectively. The Schmidt number embodies the ratio of the momentum to the 

mass diffusivity. The Schmidt number therefore quantifies the relative effectiveness of 

momentum and mass transport by diffusion in the hydrodynamic (velocity) and concentration 

(species) boundary layers. As the Schmidt number increases the concentration decreases. This 

causes the concentration buoyancy effects to decrease yielding a reduction in the fluid velocity. 

The reductions in the velocity and concentration profiles are accompanied by simultaneous 

reductions in the velocity and concentration boundary layers. These behaviors are clear from 

Figs 7(a) and 7(b). 
 
Tables (1), (2) and (3) show the numerical values of the skin friction coefficient, Nusselt number 

and Shear wood number. The effects of where Gr, Gm, M , K, Pr, R and Sc on the skin-friction 
 

C f  , Nusselt number Nu , Sherwood number  Sh  are shown in Tables 1 to 3. From Table 1, it is 
 

observed that as Gr or Gm or K increases, the skin-friction coefficient increases, where as the 

skin-friction coefficient decreases as M increases. From Table 2, it is noticed that as the skin-

friction coefficient and the Nusselt number decreases as Pr increases. R Increases the skin-

friction coefficient and the Nusselt number also increases. From Table 3, it is found that as Sc 

increases, the skin-friction coefficient decreases while the Sherwood number decreases. 
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6.  CONCLUSION 
 
 

 

In this article a mathematical model has been presented for the thermal radiation effect on 

unsteady magnetohydrodynamic flow past a vertical porous plate with variable suction. The non-

dimensional governing equations are solved with the help of finite element method. The 

conclusions of the study are as follows: 
 

 The velocity increases with the increase Grashof number and modified Grashof number. 


 The velocity decreases with an increase in the magnetic parameter. 


 The velocity increases with an increase in the permeability of the porous medium 

parameter. 


 Increasing the Prandtl number substantially decreases the translational velocity and the 

temperature function. 


 The velocity as well as temperature increases with an increase in the Radiation parameter. 


 The velocity as well as concentration decreases with an increase in the Schmidt number. 
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 Fig.1. Velocity profile for different values of G  
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Fig.2.  Velocity profile for different values of Gc 
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 Fig.3. Velocity profile for different values of M  
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 Fig.4. Velocity profile for different values of K  
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 Fig. 5 (a). Velocity profile for different values of Pr  
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Fig. 5 (b). Temperature profile for different values of Pr 
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Fig. 6 (a). Velocity profile for different values of  R  
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Fig. 6 (b). Temperature profile for different values of R 
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 Fig. 7 (a). Velocity profile for different values of Sc 
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Fig. 7 (b). Concentration profile for different values of Sc 
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Table 1:  Effect of G , Gc , M  and K  on C f 
 

( R =1.0, Pr =0.71, Sc =0.6) 
 

Gr Gm M K C f 
     

5.0 5.0 1.0 5.0 1.4562 

10.0 5.0 1.0 5.0 1.8526 

5.0 10.0 1.0 5.0 2.1261 

5.0 5.0 2.0 5.0 0.6143 

5.0 5.0 1.0 10.0 1.4265 
     

 

 

Table 2:  Effect of R and Pr on  C f   and Nu 
 

( G =5.0, Gc=5.0, M  =1.0, K =5.0, Sc =0.6) 
 

 

R Pr C f Nu 
    

1.0 0.71 1.4456 1.1419 

2.0 0.71 1.5429 1.3654 

1.0 7.0 1.2315 1.0946 
    

 
 

Table 3:  Effect of Sc  on  C f   and Sh 
 

( G = 5.0, Gc= 5.0, M  = 1.0, K =5.0, R = 1.0, Pr = 0.71) 
 

Sc C f Sh 
   

0.22 1.4479 0.5654 

0.60 1.1364 0.4429 
   

 


