WWW.aasrc.org/aasrj American Academic & Scholarly Research Journal Vol. 4, No. 2, March 2012

Fuzzy Topology On Fuzzy Sets: Regularity and Separation Axioms

A.Kandil*, S. Saleh? and M.M Yakout®
'Mathematics Department, Faculty of Science, Helwan University, Cairo, Egypt.
E-mail:dr.ali_kandil@yahoo.com
?Mathematics Department, Faculty of Education-Zabid, Hodeidah University, Yemen,
E-mail: S_wosabi@yahoo.com.
*Mathematics Department, Faculty of Education, Ain Shams University, Cairo, Egypt.
E-mail: mmyakout@yahoo.com

Abstract:

In this paper, separation and regularity axioms in fuzzy topology on fuzzy set are defined and studied.
We investigate some of its characterizations and discuss certain relationship among them with some
necessary counterexamples. Moreover some of their basic properties are examined. In addition,

goodness and hereditary properties are discussed.

1.

Introduction:

The notion of fuzzy topology on fuzzy sets was introduced by Chakraborty and Ahsanullah [1] as
one of treatments of the problem which may be called the subspace problem in fuzzy topological
spaces. One of the advantages of defining topology on a fuzzy set lies in the fact that subspace
topologies can now be developed on fuzzy subsets of a fuzzy set. Later Chaudhury and Das [2]
studied several fundamental properties of such fuzzy topologies. The concept of separation axioms
is one of most important concepts in topology. In fuzzy setting, it had been studied by many authors
such as [3,5,6,7,10].However, the separation and regularity axioms has not yet been studied in the
new setting, only in [2] they introduced the concept of Hausdorff, regular and normal spaces. The
object of the present paper is to introduce a set of new regularity and separation axioms which are
called (FR; ,i = 0,1,2,3) and (FT;,i= 0,1,2,3,4) by using quasi-coincident and neighborhood system.
Our work organized as follows, In section 1. We give some preliminary concepts, investigating
some of new results in the new setting. In section 2. We give the definition of regularity axioms
(FRi ; i=0,1,2,3) and some characteristics theorems are proved. Next the separation axioms (FT;; i =
0,1,2,3,4) are introduced, investigating many of its properties in section 3. Finally, in section 4. We
examine the hereditary and good extension property in the sense of Lowen [9].

Definitions and Notations
Throughout this paper, X denotes a non-empty set, the symbol I will denote the closed unit

interval and a fuzzy set A of X is a function with domain X and values inl. A fuzzy point x,

isa fuzzy set such x,(y) =a >0 ifx =y forally € X and x,(y) = 0if x # y. We write x, € A if
a < A(x). The family of all fuzzy points of A will be denoted by FP(A). If A,B € IX, B(x) < A(x)

V x € X, then B is said to be a fuzzy subset of A and denoted by B € A . The family of all fuzzy subsets
of A will denoted by F, i.e F, = {B € I*: B € A}. The set S(4) = {x € X: A(x) > 0} is said to be the
support of A. If a € I, the fuzzy subset of X which assigns o V x € X will be denoted by a. If B C X,
then yp denotes the characteristic function of B on X.

1.1 Definition

If B c S(A). Thenys = yp N A denotes the characteristic function of B referred to A.

In general a fuzzy subset Eof A is called a maximal if E = gy N Aie if Vx € X, E(x) # 0, then
E(x) = A(x). If B € F,, then the complement of B referred to A, denoted by B, and defined by,

B,(x) = A(x) — B(x)Vx € X.Let U,V € F,. Then U,V are said to be quasi—coincident
referred to A, denoted by Uq,V iff there existsx € S(A) such that U(x) + V(x) > A(x).
If Uis not quasi—coincident with Vreferred to A, then we denoted for this by Ug,V .

Now one can easily prove the following proposition as in [1].

1.2 Proposition

LetU,V,G € Fy and x,, yz € FP(A). Then:

DUGV oUCSY,,

2) UG,V < ViU,

AUNV =0=Ug,V,

4) UGaUy

5)U§,V,G <V S A=U G§,G,
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B)U CV & (x,q.U = x,q4V), x, € FP(A).
7) x¢q4(Uie; U;) © x,q4U; , forsomei € J,

8) xaQA(U N V) = (xanUandxanV),

9) x #y = xqqaysVa, B €1,

10) xoGayg © x #yor (x =y,a + f < A(x)).

1.3 Lemma

LetU,V € F,and {U;:i € J} € F,. Then:
NSWUNV)=SW)nSW),

ii) S(Uie, U;) = Uie; S(UY).

Proof. Obvious.

Now we recall the basic definition of fuzzy topology on fuzzy set as in [1].

1.4 Definition

Let A be a fuzzy subset of X. A collection & of fuzzy subsets of 4 i.e § c F, satisfying the following
conditions:

i)0,A €54,

iu,ves=UnVEeSs,

is called a fuzzy topology on A. The pair (4, §) is called a fuzzy topological space, members of § will
be called a fuzzy open sets and their complements referred to A are called a fuzzy closed sets of (4, §).
The family of all fuzzy closed sets in (4, §) will be denoted by &} .

Note: Unless otherwise mentioned by fuzzy topological spaces we shall mean it in
the sense
of the above definition and (A4,8) will denote a fuzzy topological space.

1.5 Definition
A fuzzy topological space (4,8) is called a fully stratified if each fuzzy subset in
the form anNA is in § for all a €.

1.6 Definition

Let (A,6)be a fuzzy topological space, x, € FP(A). Then any fuzzy set Oy, € 6
contains x, is called a neighborhood (nbd, for short) of x, in (4,8). The set of
all neighborhoods of x, will be denoted by, Nj(x,). In general for any B € Fy,

Og € 6 denotes a fuzzy open subset of A contains B.

1.7 Definition
Let (4, 6) be a fuzzy topological space, B € F,. Then the closure(interior) of B is defined by:

)Ba=n{U: U €&, BcU},
ii)B, B=U {G : G € 5, G < B}, respectively.

1.8 Proposition
Let (4, §) be a fuzzy topological space, B € Fpand x, € FP(A). Then we have:

)(84), = (1),
i) x, € B, & there exists 0, € N,(x,) such that 0, < B.
iii) x,q4B & Oy,q4B, forall 0, € Ny(x,).

iv) Vg,B < Vq,B , forallV € 6.
Proof. Stratiforward.

In the following we recall the concept of the strong a-cut of any fuzzy subset of A as in [10].
1.9 Definition: For any B € F,. We define, B, = {x € X: B(x) > a}, a € I\{1}.

1.10 Proposition
Let {B;:i € J} € Fa, « € I\{1} and S is a finite index set. Then we have:

1) (UigjBi)a = Uigj(B)
i) (Nies Bi)a < Nies(Bi)a -

By using the Lemma (1.3), it is easy to prove the following theorem.
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1.11 Theorem
a) Let 0 # A € I* and (5(4), 1) be a topological space on S(A). Then the following structures:
i) 6; = {B € F5:S(B) € 1} and,
i) A= {x}:B € 1},
are fuzzy topologies on A generated by .
b) Let (A, o) be a fuzzy topological space on A. Then the following structures:
)7, ={S(B):Bed} and,
ii) [5]={B = S(A): 4 5},
are ordinary topologies on S(A) generated by 6.

1.12 Proposition

Let 0 # A € I*, (S(4),7) be atopological space on S(4) and (4, §) a fuzzy topological space on A.
Then:

NanNA€Ed, Vael,

ii)VB e, yf €5, andthen A< 6,

iii) T =15, and § < &, .

Proof. Straightforward.

1.13 Definition

Let A € I*. A topological space (S(A), t) is said to be an s-topological space on S(A) iff,

T contains A, for all a € I.

The following example shows the existence of s-topological space and shows that a topological space
(S(A),7) need not be s-topological space and shows that the family, T U {A,: « € I } need not be a
topological space on S(A).

1.14 Example

Let X = {x,y,z}and A = (xo5,¥1,%05) € IX. Then we have:

i)S(A) =Xand {A:a€l}={X{y}}

i) 7, = {¢, X, {x},{x, z}} is a topology on S(A) but not s-topology.

i) 7, = {¢, X, {x}, {v}, {x, y}} is s-topology on S(4).

V) T, U{Ag:a €1} ={¢, X, {x},{y}, {x,z}} is not a topology on S(A).

1.15 Definition

Let (S(A), 1) be an s-topological space on S(A). Then a fuzzy subset B of A is said to be a fuzzy lower
semi-continuous function on S(A) if B, € t for all « € I. The set of all fuzzy subsets of A which is
lower semi-continuous functions on S(A) will be denoted by, w, (1) i.e. w,(t) = {B € F4: B, € 7,
a€l}.

1.16 Proposition
Let (S(A), T) be an s-topological space. Then the family w,(7) is a fuzzy topology on A and
(A, w, (7)) is called an induced fuzzy topological space by .

Now one can easily prove the following lemma.
1.17 Lemma
Let (S(A), t) be an s-topological space on S(4), B < A and G < S(A). Then we have:
i) B € wy(7) iff (B, € TVa € I\{1}),
i) G € Tiff y2& € wy (1),
i) an A€ wy(r)forall a €1,

v) (), = x5,
V) B = Uges a)(ga-

1.18 Definition

A fuzzy topological space(4, §) is said to be a weakly induced iff, for every B € §,

B, € [8] for alla € I i.e. iff every element in & is a fuzzy lower semi-continuous function
from (S(4), [d]) to 1.

Note: One of the advantages of defining topology on a fuzzy set lies in the fact that subspace topologies
can now be developed on fuzzy subsets of a fuzzy set as follows:

1.19 Definition[1,2]
Let (4, 5)be a fuzzy topological space and Y € A. Then the family 6y ={Y nV:V €} is a fuzzy
topology on Y and (Y, &y) is called a fuzzy subspace of (4, §).
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Note: If Y is a maximal subset of A4, then (Y, dy) is called a maximal subspace of (4, 9) .

1.20 Proposition[13,15]

Let (Y, 6y) be the maximal subspace of a FTS (4, §). Then:

i) E c Yis closed in (Y,8y) ifand only if E = Y n B, where B € §,,,

ii) For every E € Y , we have E, = Y n E,, where Ey, E,, are closures of E in (Y, 8y) and
(4,6), respectively.

2. Fuzzy regularity axioms

2.1 Definition

A fuzzy topological space (4, §) is said to be:

i) FRo-space iff Vx, ,y; € FP(A) with xanyﬁ implies X, Gayg,

i) FR;-space iff Vx, ,yz € FP(A) with xanyﬁ implies there exist O, € N4(x,) and

0y, € N4(yg) such that O, G40y,

iii) FR,-space iff (v x, € FP(A) and V B € §,) with x,§,B implies there exist Oy, € Na(xq)
and Op € N4(B) suchthat 0, G,0g.

iv) FRs-space iff vV U,V € §,with UG,V implies there existO, € N,(U) and O, € N4 (V)

such that 0G40y .

Note: FR; (resp. FR3) spaces are those which are called fuzzy regular (resp. fuzzy normal) spaces and
was introduced in [2] as an extension of its original concept in [8].

In the following we introduce some properties of FR, space.
2.2 Theorem
Let (4, ) be a fuzzy topological spaces, x, € FP(A) and F € §, . Then the following statements are
equivalent:
1) (4, 9) is a FRo-space,
2)Xq € Oy, ,V Oy, € Ny(xg).
3) Xg EN{0,,: 0y, € Ny(xg)}-
4) x,G4F implies there exists O € N(F) such that x,§40F.
5) x,G,F implies x, g, F.
6) Xan}/ﬁ imp"es anAyﬁ'
Proof.
1) = 2) Let ygqax, g xaq,ﬁﬁ. By (ii) of Proposition (1.8) we have ygq,0, YOy, = X4 S
0, V0, € Ny(x,) (by (6) of Proposition (1.2)).
2) =3) is obvious.
3) = 4) Letx,G,F = xy € F, 3%, CF, = F €X', = Op, 50%gi,%'s = Op.
4) = 5) Let x,G4F (:43 there exists O such
thatx,§,0r = x, € O = X, € 0F = XyGa0r = X,G4F.
5) = 6) and 6) = 1) are obvious.

2.3 Theorem
The following implications hold:
FR; ANFR, = FR, = FR, = FR,.
Proof
i) Let (A,0) beaFR;, FRoand let x,§,G, G € 6'. Then from (5) of the above theorem we have X,

daG . Since (A, 0) is FRs, then there exist O, , O, such thatO; G, O . Take,

O, =0, ,then O, G40, and hence (A,J) is FR,-space.

ii) Let (A,0) be a FR, space and let x_, g4 Y, Then there existO, and Oyﬁ € 0 such that

O, 4a Oyﬁ . TakeOyﬁ = Oyﬁ =0, qga Oyﬁ . Hence (L*,&)is a FR; space.

iii) Let (A,0) be a FRispace, y,G40, = y,<0;, =Y,c0, =0, §a¥,= X,qa¥, and so there
exist O, , Oy, €6 such that O,, da Oy, = Yy, da X, (by (iii) of Proposition (1.8)). So by (6) of
Proposition (1.2)) we getX, c O, VO, Hence (A J)is FR,.

2.4 Corollary
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Let(A, §)be a fuzzy topological space. Then(4, ) is a FRy if and only if V x, ,yz € FP(A) with
xanyB implies there exist O%_, Oyﬁ € & such that OfanOVB-

Proof. Follows from the above implication and from (2) of Theorem (2.2).

2.5 Lemma

Let (S(A), t)be a topological space, x, € A. Then we have:

i)x, €5, forall 0+ a < A(x),

—36

. A T _ A

i) x5y = th forall x € S(A).

Proof. Obvious.
2.6 Theorem

Let (S(A), 7) be a topological space on S(4). Then (4, §,) is FRy if and only if (S(A), 1) is a Ro-space.

Proof. Let (4, 6;) be a FRo-space x € y. Then x,(x)qay, (y)(by the above lemma) implies
X440y, (since(A, 6;) is FRy) = Ya(y)qaXacx) (DY (iii) of Proposition (1.8) ) = y € x (by the
above lemma). Hence(S(A), 1) is a R, -space.
Conversely, let (S(4),1) be a Rp-space, x, € A. Sincex, € 5! Va < A(x). Then
Xq = Xq < Oy, YOy, , When a = A(x) then clearly X,y = O, (since (5(4),7) is

R, ie. X< O, V O, e7r). Hence (4, §,) is a FRo-space.

2.7 Theorem
Let (S(A), t) be a topological space. If (S(A4), T)is R, -space, then (4, §,) is FR;-space.
Proof. Let (S(4),7) be a Ri-space, x,,Y, € FP(A) with x,G,ys. Then either x # y or (x =y,
a+ B < A(x)).
(@) If x # y,theneitherx #yorx =Y.
i) If X # y, then there exist 0, , 0, € 7 such that 0, N 0, = ¢. Now we take O, = x4 € &,
and 0, = )(;;‘y € &;, then xo,Ga0,, . Hence (4, 8,) is FRy space.
i) If x #y, x =7y, this case is excluded (since (X,7) is R;).
b)lIfx=y, a+p < A(x), thenwetake 0,, =a N4, Oy, = B N A € &, to be the required
neighborhoods. Hence (4, §,) is a FR1-space.

2.8 Theorem

Let (4, &) be a fuzzy topological space. Then (4, §)is FR, if and only if for all

x, € FP(A) and for all O,, € N(x,) there exists O}_such that 0; S O,..

Proof. Let (4, §) bea FRz , x, € FP(A) and O, € N,(x,). Then x,§,0,, = there exist

0%, €N(x,), G eN(Oy,) such that 0% G, G implies that O3 < G, € 6, = 05 Gy Oy,
Conversely, let x, € FP(A) , G € 8, be such that x,G, G . Then x, = G, i.e. G, € N(x,), so there

exists O, such that 0;_< 0, =G, (by hypothesis)= G (0%, )'S=0; and 043,05, Hence (4,8) is
a FR,-space.

2.9 Theorem

Let (4, 8) be a fuzzy topological space . Then (4, §) is FR;(normal) ifand only if V F € §', V O there

exists Oy such that 0; € 0.
Proof. The proof is analogous to the above proof.

3. Fuzzy separation axioms

3.1 Definition
A fuzzy topological space (4, §) is said to be:
i) FTo-space iff Vx, ,yp € FP(A) with x,4,yz implies there exists O, € N,(x,) such that
Oy, qayp Or there exists Oy, € NA(yﬁ) such that OypdaXq -
i) FT1-space iff Vx, ,yp € FP(A) with x4,y implies there exist O, € N,(x,) such that
Ox,G4¥p and there exists 0, , € N,(yp) such that Oy pda%e -
iii) FTo-space iff Vx, ,y; € FP(A) with x,4,yz implies thereexist O, € N4(x,) and
Oy, € N4(yg) such that Oxa G40y,
iv) FTs-space iff it is FR, and FT;-space.
V) FT4-space iff it is FR3 and FT;-space.
3.2 Theorem
Let (A, 0)be a fuzzy topological space. Then (A, &) is FT, if and only if (X, G4 y, implies
X qA yﬂ or Ka QA yﬂ)
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Proof. Let (A,6)beaFT,andx,,y, € FP(A)with X, g, y,. Thenthere exists O, such that

O, Gays = X,4ay, or there exists Oyﬁ such that x, g, Oyﬁ =X, qa Y, (by (iii) of Proposition
(1.8)).Conversely, let X, Ga ¥, O X,Gay, = X, <V, =Y, Gay, OF y, <X, =X 4ax,.Hence (AJ)
is a FTy space.

3.3 Theorem

Let (S(A4), 7)be a topological space. Then (A,d,)is FT, if and only if (§(A), t) is T,-space.

Proof

Let(A,6,) be a FTo-space and X = y . Then x,q4yg, in particular x,xyGayac,) implies there exists

o) € &, such that y, ;G40 , ., OF there exists O € 67 such that x4, G40,

XA(x) A(x) Yay
Take 0, = S(OxA(x)) € 7,then y¢S(0,, ) ortake 0, = S(OyA(y)
(S(A),7) isa T,-space.

Conversely, let (S(4),7) bea T, and ¥ x,,y, € FP(A) with X, g, y,. Theneither x =y or

(x=y, a+B<A(X) ). If x=y,thenthere exists O, e z such thaty ¢ O, or there exists O, e z such

A"

) € 7, thenx 25 (0

A(x)

J’A(y))' Hence

thatx ¢ O, . Now take O,, = x5, € 8, , then yzgax§, ortake 0, = x5 € 8, , thenx, gaxs,. Hence
(A, 0.) isaFTo-space.

If x=y, a+p<A(X),thenwe take 0, = an A € §; and Oy, = B N A € &, (by(i) of Proposition
(1.12) ) to be the required neighborhoods. Hence (A, S, ) is a FTy-space.

3.4 Theorem

Let (A, o) be a fuzzy topological spaces. If (A &) is FT, , then (S(A4), ts) is a T,-space.

Proof. The proof is analogous to that of necessity of the above theorem.

3.5 Theorem

Let (A, &) be a fully stratified fuzzy topological space. Then (A,5) is FT, if and only if (S(A),s) is a
T, -Space.

Proof. Necessity, follows from the above theorem.

Conversely, let (S(4),t5) bea T,-space andx, G, y, ¥Xx,,y, € FP(A) . Theneither x =y or (x=y,
a+ < AX) ). If x=y, then there exists 0, = S(ng) € 75 suchthaty ¢ O, or there exists 0, =

S()(gy) € 74 such thatx ¢ O, . Now take O, = x4_ € &, then yz G, x5, or take Oy, = ng €& ,then x,
Ga ng. Hence (A,5.) is a FTo-space.

If(x=y, a+B<A(X)) thenTake O,, =anA€sdor0,, =B NAES (since (A,0) is fully
stratified) to be the required neighborhoods. Hence (A,5)is a FT,-space.

3.6 Theorem

Let (A 0) be a fully stratified fuzzy topological space. If (S(4), []) is aT,-space, then (A, &) isa FT, -
space.

Proof. Let (S(A),[6]Dbea T, and X, G4 y,, VX, .y, € FP(A) . Then either x =y or (x=y,

a+ B <A(x) ). If x=y,then there exists O, € [§] such thaty ¢ O, or there exists 0,, € [§] such that
xe0,. Now take O, = x4 € &, then ypg,x4, or take Oy, = Xéy € & , then x, €1A)('0“y. Hence

(A0)is FT, .

If x=y, a+B<AX), thentake 0,, =anA€dor0,, =B NAEG (since (A,0) is fully stratified)
to be the required neighborhoods. Hence (A,5)is a FT,-space.

3.7 Theorem

Let (A 0) be a fully stratified and weakly induced fuzzy topological space. Then (S(4), [6]) isT,-space if
and only if (A,0) is FT, space.

Proof. Necessity, follows from the above theorem.

Conversely, let (A,0) be FT, and x =y, then x, . §aYacy). Since (A,0) is FT, , then there exists
Oxpy €0 such that Yay)qaOx,,,OF there exists OyA(y) € 4 such that xA(x)qAOyA(y). Now take 0, =
(Oxp)a € [6] or take 0, = (Oy,0))a € [8] (since (A, 0) is weakly induced), then it is easy to see that
y &0, or xeO,. Hence (S(4), [8]) isT,-space.

In the following theorems we study some properties of FT, spaces.

3.8 Theorem

Let (A, 0) be a fuzzy topological space. Then the following statements are equivalent:

i) (A/0)isaFT; space,
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i) Vx,,y, e FP(A)withx, G, y, impliesx, G, y, and y, G4, X, ,
iii)X, =x, , v x, € FP(A).
Proof. i) <> i) is clearly from (iii) of Proposition (1.8).
) =iii) Let x, g, y, = there existsO, suchthat x, G, O, thisimplies O, < (x,)} .thus(x,)’ is open
l.e.x, isclosed = X, = x_. And this is true for every x, € FP(A).
)= i) X, =X,V x, eFP(A)and X,q4ay,. Thenx,,y, e5,.Since y,g,y, =0, and
X, q %, =0, . Hence (A,0) isaFTy-space.
3.9 Theorem
Let (A, J) be a fuzzy topological space. If (A, &) is FT, , then (S(4), t5) is a T, space.
Proof. Let(A,0)be a FT; and X € S(A). Then X, ,, = X, and sox),,, € & this implies that
S( X)) = S(A)\{x} e 7, so {X}is closed for all x € S(A). Hence (S(A),s) is a T, space.
3.10 Theorem
Let (A/0)be a fully stratified fuzzy topological space. Then(A,&)is FT, if and only if
(S(A),t5)is T,—space.
Proof. Necessity, follows from the above theorem. Conversely, the proof is similar to
that of Theorem (3.5).
3.11 Theorem
Let (S(A), ) be a topological space. Then (S(A4),t) is T, ifand only if (A,5,)isFT,.
Proof. Necessity, let (S(A),7) be aT,-space and x4 yg VX, , Y, € FP(A). Theneitherx = yor(x=y,
a+ A< A(X)). Now if x =y, then there exists O, € rsuch thaty ¢ O, and there existsO, ez such that
x¢0,. Take Oy, = x§, € §; and0,,, = X;;‘y € &;, then G x5, and
X, Ga ng. Hence (A, 5. ) is FT, space.
If(x=y, a+pB<A(X). Take O,, =anA € 6, and Oy, = B NA €, to be the required
neighborhoods. Hence (A, o, )is a FT1- space.
Conversely, let (A,5,)be a FTi-space Then (S(A),7) is a T1—space (by Theorem (3.10)). But z =z, (by
(iii) of Proposition (1.12)). Hence (X,t) is a T1-space.
3.12 Theorem
Let (A,0) be a fully stratified fuzzy topological space. If (S(A), [6]) isT,-space, then (A, &) is FT, space.

Proof. The proof is analogous to that of Theorem (3.6).
3.13 Theorem

Let (A, J) be a fully stratified and weakly induced fuzzy topological space. Then (S(A), [8]) isT,-space if
and only if (A, o) is FT, space.
Proof. The proof is analogous to the proof of Theorem (3.7).

The following example shows that the converse of Theorem (3.4) and Theorem (3.9) may not be true in
general.

3.14 Example

Let X = {x,y}, A = (xo5,Yos) € IX. Take § = {0, 4, (xo5, o), (x0, Yo )} Then & is a fuzzy topology
on A and 75 = {@,S(A),{x}, {y}} is a topology on S(A) which is a T, -space.

But (4, 8) is not a FT, -space. In factx, 3G 4x04, but there is no O, , such that O, .G,x,1 and there is no
Oy, suchthat O,  Gaxos -

3.15 Theorem

Let (4, 8) be a fuzzy topological space. If (4,8) isa FT,, then:

xa =0 {(0x,), + Ox, € Ny(xs)} for all x, € FP(4).

Proof. Let (4,5) be a FT, space, x,, € FP(A). Then for any yzgx,, there exist Oy, 0%, € 6 such that
Oy, GaOyx, = ¥pGa0y,, for all Oy (by (iii) of Proposition (1.8) ) and s0, y3Ga N Oy, = x,2N O, (by
(6) of Proposition (1.2)). But clearly x,cN 5xa .

Hence we get the result

3.16 Theorem

Let (S(A), t) be a topological space. If (S(A), 1) is T,-space, then (A,8.)isFT, space.
Proof. Let (X,t) be aT,-space , x,§,yp . Theneither x=y or (x=y,a+ £ < A(X)).
If x =y, then there exist O, ez and O, ersuchthatO, NO, =¢. Take 0, = ng € 4, and
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Oy, = X6, € 8, thenyp Gaxb, -
If(x=y, a+B<A(X)), thentake O, =aNAes,and Oyﬂ = 1 A€o, to be the required
neighborhoods. Hence (A, o, )is a FT, -space.

Note: The Example (3.4) in [7] shows that the converse of the above theorem may not be true in general,
where consider X an infinite set and A € I* be an infinite maximal subset of X.

The following example shows that, in general, a T,-space(S(A), s5) need not imply that (4,6) be a FT,
space.

3.17 Example

Let (S(A),7) be any To-space and § = A,= {x : B € }. Then t5 = 7 which is a T,-space. But (4, §) is
not a FT, space.

3.18 Theorem

Let (A,J) be a fully stratified fuzzy topological space. If (S(A),[5]) is a T,-space, then(A,J) isa FT,
space.

Proof. The proof is similar to that of Theorem (3.6).

3.19 Theorem
Let (A,J) be a fully stratified and weakly induced fuzzy topological space. Then (S(4), [8]) is aT,-space
if and only if (A,0) isaFT, -space.
Proof. Straightforward.
3.20 Definition[2]
A fuzzy topological space (A,J) is said to be a fuzzy T,-space if Vx,,y, €, A with
(x #y),3U,V €dsuchthatx, €, U,y, € Vand Ug,V, (where x, € Aiff p <A(x)).
3.21 Theorem
Let (A,J) be a fuzzy topological space. Then our FT, -space is a fuzzy T,-space in the sense of the above

definition.
Proof. Obvious and so is omitted.

The following example shows that the converse of the above theorem may not be true in general.
3.22 Example
LetX = {x,y,z} and A = (x5, Y05, Z04) € [*. Take § = {Q: A, (X0 Y0, Z0), (X0, Vo5 ’Zo)’
(x0,¥0,20.4), (X6, Vo5, Z0), (X6, Yo » Z0.4), (X0, V0.5, Z0.4)} - Then & is a fuzzy topology on A which is a
fuzzy T,space in the sense of Definition (3.20). But (4, §) is not FT, space in our sense. In fact xo 3§40,
but there do not exist any two members of § which not quasi-coincident referred to A members of
& containing x, 3 and x .
6.3.23 Theorem
The following implications hold:
FT4 = FT3 = FTz = FT1 = FTO
Proof.
i) Let(4, 5)be a FT, space and x,44B, B € 6, . ThenXx, = x, = X,{,4B . Since (4, §) is a FRs, then
there exist Ox_, Op € & such that Ox_G,0p. Now Put O, = Ox_ , then 0, §,05. Hence (4,8) isa FTs-
space.
i) Let(4, 6)be a FT3 space and x,d,yp - Then X, = x, = X,§yp , X4 € 6,. Since (4,6) is
FR;, then there existOx_and Oy, such that 0%,440y,. Now Put 0, = Ox, , then Oy, G40y, Hence (4,6)
is a FT,-space.
iii) Let(4, &) be a FT, space and let x,4,yp . Then there exist 0, _and Oy, such that 0, g,
Oy = Yqa0Ox, and XG0y, = xaniﬁand XqG4yp (by (iii) of Theorem (1.8)).
Hence (4, §) is a FT1-space.
iv) Obvious.

From the above theorem and Theorem (2.3), we obtain the following results.
3.24 Corollary
The following implications hold:

FT4:> FT3 = FTZ = FT1 = FTo
U U b U
FRs A FRo= FR,= FR; = FRo=any F-space.

ISSN 2162-321X E-ISSN 2162-3228



WWW.aasrc.org/aasrj American Academic & Scholarly Research Journal Vol. 4, No. 2, March 2012

4. Some Properties

4.1 Theorem

Let (S(A), ) be an s-topological space on (S(A4). Then:

(5(A),7) isa R;-space & (A,w, (1)) is a FR;-space, where i = 0, 1, 2.

Proof.

Fori = 0. Suppose (S(4), 7) is Ro-space. Let x, € FP(A) and let O,, € w,(z). Then x € (0y,), € 7 for
any a < t. Since (S(A),7) is Ro, thenx < (0y,)  forany a < t. It follows that ayx(;, :a)(f‘?} S AX{o,)e

forany a < t. Itis easy to see that X, © Uger Xy = Vast% C Vet “X(ont)a C Vyer “X(ont)a = Oy,
Thenx, < 0,, and so (4, w,(z)) is FRo .

Conversely, suppose (4, w, (7)) is a FRo-space , x € S(4) and let O,, € 7. Then xu¢) S x4, € wa(D). It
follows that ch_} = )@ c ng and so x < 0,.. Hence (S(A), 1) is a Ro-space.

Fori = 1. Suppose (S(4),7) isaRi-space, X, ,Y, € FP(A) with x,g,ygz. Then either
x#yor(x=ya+p < Ax)).
a) If x # y, then either x # y or x = y and so we have to cases:
i) If x # y, then there exist 0, , 0, € 7 such that 0, N 0, = ¢. Put 0, = x5 € w,(7) and
Oy, = X5, € wa(T), then xo,qa O,, . Hence (4, w, (1)) is a FRy-space.
i) If x =7y, this case is excluded (since (S(A), 1) is R, ).
b) Ifx =y, a + B < A(x), then we put O, =aNA, Oyﬁ =,§ﬂAe w, (1) to be the required
neighborhoods. Hence (4, w, (7)) is a FR; space.
Conversely, suppose (4, w,(t)) isaFRyand x & ¥ , then X4 AaY g - Since(4, wy (7))is FRy, then

30x,00 1 Oyaey) € wy(7) such that O, , 0040y Now put 0, =(0xA(x>)

ando, =(0yA(y))

AW %A(x) ET
Law) € 7, then remains to prove that 0, N 0, = ¢.
Suppose z € (O, n (0

1 1 1
yA(y))%A(y) = Oy, (2) > S A(X)and0,, () > A(y) = ZA(y) >

A(x))%A(x)
OJ',A(y) (z). Now we have two cases. IfiA(x) > %A(y), then 0,
O sy S OJ',A(y). If%A(y) > %A(x) we get the same contradiction.

Hence (S(A), 1) is a Ry-space.

(z) > 0y, . (z) which contradicts to

A(x) Ay

Fori =. Let (S(A),7) be a Ry-space and x; € FP(A) with x, € U € w, (7). Now for any t < a we have
x € U, € 7. Since (S(4),1) is R, and so there exists V € t such that x € V € V C U,. It is clear that
X €ty Stxy =¥Et}({}a cUu.
Conversely, suppose (A, w, (T)) is a FRo-space x € U € 7. Then we have x,,, € w;,(t) and so there
exists V € wy,(7) such that x,) €V €V, S x{} . Then x € (X))o € (V)o € (Va)o € (V), S U.
Hence (S(A), 1) is a Rp-space.
4.2 Theorem
Let (S(A), t) be an s-topological space. Then (S(A), 1) is a T;-space if and only if (4, w, (7)) isa FT;-
space, fori =0,1,2,3.
Proof. Fori = 1. Suppose (S(4), 7) is a Ty-space and x,g,ys. Theneither x =y or (x=vy,
a+ B < A(X)). i) If x= ythen there exists O, € rsuch that y & O, and there existsO,, € T such that
x & 0y and 50 ygGaxs. = Oy (say) and x,d, ng = 0y,(say), where 0, , 0, , € w,(7).
i) If(x=y,a+B<A(X), thentake O, =a NA, 0, = BN Aew,(z) to be the required
neighborhoods. Hence (A4, w,(t))is a FT;-space.
Conversely, suppose (4, w, (7)) is a FTi-space and X # Y. Then x,§,ys Va, B belong to the range of A.
In particular, we have x,.x)§aYa(y). Hence there exists O, a0 EWL (1) such that 0, 20 daYAw) and there
exists 0y,40) € Wa (1) such that X4 440y (- Thus forany 0 < a < A(x) we have y & (Ox,,,)s €
T and x & (0, i) € T. Hence (S(4), 1) is a T;-space.

The proof for the case i = 0 is similar to that of the case i = 1of the above theorem.

The proof for the case i = 2 is similar to the case i = 1 of the above theorem.

Fori = 3. The proof follows from the cases i = 2 of Theorem(4.1) and from case i = 1 of the above
theorem.
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Now, in the following theorems we will show that the axioms (FR;, fori = 0,1,2) and (FT;, for
i =0,1,2,3) are hereditary referred to the class of maximal subspaces.
4.3 Theorem
Let(4, §) be a fuzzy topological space and Y be a maximal fuzzy subset of A. If (4, §) is FR;, then the
fuzzy subspace (Y, éy) is FR; ,fori =0, 1, 2.
Proof.
As a sample we will prove the case i = 2. Let (4, §) be a FR,-spasce , x, € FP(Y) and G be a fuzzy

—5 —6
subset of (Y, 8y) with x,gyG. Then x,GyG ’. Since Y is a maximal fuzzy subset of A, then G “=vn
—5 -5 . (=5
G andsox,Gy (Y NG ) = xo(2) + min T @r@}<r@.

-5 —6
Now if Y(z) # 0 = Y(2) = A(z), hence x,(z) + G (2) < A(z) = x,G,G . IfY(z) = 0, thenx,(2) =
-5 —6
0 and so x,(2) + G (2) < A(2). S0 x,G,G . Since (4, 6) is FRz , then there exist O, , 055 € &§ such

that OxanOE‘s . Take Oy, = 0., NY € 8y and O = 055 NY € by , then Oz, Gy O (since Y is a maximal

fuzzy subset of A). Hence (Y, &y) is a FR»-space.

4.4 Theorem

Let (4, 8) be a fuzzy topological space and Y be a maximal closed fuzzy subset of A. If (4,6) is FR5,
then the fuzzy subspace (Y, éy) is FR5.

Proof. Obvious and so is omitted.

4.5 Theorem

Let (4, 8) be a fuzzy topological space and Y be a maximal fuzzy subset of A. If (4, ) is FT;, then the
subspace (Y,6y) is FT; ,fori =0,1, 2, 3.

Proof.

As a sample we will prove the case i = 0 . Let (4,6) be aFTo, x,, yg € FP(Y) with x,gyyg. Then

X GaYp- Since (4, 8) is FTo, then there existsO, € & such that O,_§,yp or there exists Oy, € & such
that OquAxa. Take Ox, = Oy, NY € &y Or O;B = Oyﬁ NY € 6y. Since Y is a maximal fuzzy subset of
A, then Ox_ Gyygp or Oy 5 dyxq. Hence (Y, 8y) is a FTy-space.

Remark

If Y any fuzzy subset of A, then the axioms (FR; , fori = 0,1,2) and (FT; , fori = 0,1, 2,3) need not be
hereditary properties.

The following example shows the above remark.

4.6 Example

Let X = {x,y,z}and A = (x07,Y0.5,%07) € I*. Take § = {0, 4, (Xo4, Y03 »Z055)s

(%03 ,Y03,202)} - Then & is a fuzzy topology on A which is FR; and FR,. Now let Y = (xq,y0,20,) be
any fuzzy subset of A. Then 8y = { ¢,Y } and so (Y, &y) is a fuzzy subspace of (4, §) but it is not a FR-
space.
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