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Abstract: 

In this paper, separation and regularity axioms in fuzzy topology on fuzzy set are defined and studied. 

We investigate some of its characterizations and discuss certain relationship among them with some 

necessary counterexamples. Moreover some of their basic properties are examined. In addition, 

goodness and hereditary properties are discussed. 

1. Introduction: 

The notion of fuzzy topology on fuzzy sets was introduced by Chakraborty and Ahsanullah [1] as 

one of treatments of the problem which may be called the subspace problem in fuzzy topological 

spaces. One of the advantages of defining topology on a fuzzy set lies in the fact that subspace 

topologies can now be developed on fuzzy subsets of a fuzzy set. Later Chaudhury and Das [2] 

studied several fundamental properties of such fuzzy topologies. The concept of separation axioms 

is one of most important concepts in topology. In fuzzy setting, it had been studied by many authors 

such as [3,5,6,7,10].However, the separation and regularity axioms has not yet been studied in the 

new setting, only in [2] they introduced the concept of Hausdorff, regular and normal spaces. The 

object of the present paper is to introduce a set of new regularity and separation axioms which are 

called (FRi ,i = 0,1,2,3) and (FTi ,i= 0,1,2,3,4) by using quasi-coincident and neighborhood system. 

Our work organized as follows, In section 1. We give some preliminary concepts, investigating 

some of new results in the new setting. In section 2. We give the definition of regularity axioms 

(FRi ; i=0,1,2,3) and some characteristics theorems are proved. Next the separation axioms (FTi; i = 

0,1,2,3,4) are introduced, investigating many of its properties in section 3. Finally, in section 4. We 

examine the hereditary and good extension property in the sense of Lowen [9]. 

 

2. Definitions and Notations 

Throughout this paper,   denotes a non-empty set, the symbol   will denote the closed unit  

interval and a fuzzy set   of    is a function with domain   and values in . A fuzzy point     

is a fuzzy set such            if      for all     and         if      We write      if 

      . The family of all fuzzy points of   will be denoted by        If                   

       then   is said to be a fuzzy subset of   and denoted by     . The family of all fuzzy subsets 

of   will denoted by    i.e                The set                   is said to be the 

support of  . If    , the fuzzy subset of   which assigns          will be denoted by  . If      

then    denotes the characteristic function of   on  .  

 
1.1 Definition  

If       . Then  
       denotes the characteristic function of   referred to  . 

In general a fuzzy subset  of   is called a maximal if           i.e if            , then 

         . If     , then the complement of B referred to A, denoted by   
  and defined by, 

  
                  . Let       . Then     are said to be quasi-coincident 

referred to  , denoted by      iff there exists        such that                 

If   is not quasi-coincident with  referred to    then we denoted for this by       . 

 
Now one can easily prove the following proposition as in [1]. 

1.2  Proposition   
    Let          and             . Then: 

1)           
  , 

2)             , 

3)            , 

4)       
  ,  

5)             U    G, 
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6)                           .  

7)                     , for some    , 

8)                          , 

9)                  , 

10)                              . 

 

1.3 Lemma 

Let        and            . Then: 

i)                   

ii)                      
Proof.  Obvious. 

 

Now we recall the basic definition of fuzzy topology on fuzzy set as in [1]. 

1.4 Definition 

Let   be a fuzzy subset of  . A collection   of fuzzy subsets of   i.e      satisfying the following 

conditions: 

i)   ,    , 

ii)            , 

iii)                     

is called a fuzzy topology on  . The pair       is called a fuzzy topological space, members of   will 

be called a fuzzy open sets and their complements referred to   are called a fuzzy closed sets of        
The family of all fuzzy closed sets in       will be denoted by   

 . 

 

Note: Unless otherwise mentioned by fuzzy topological spaces we shall mean it in 

the sense  

of the above definition and       will denote a fuzzy topological space. 

 
1.5 Definition 

A fuzzy topological space       is called a fully stratified if each fuzzy subset in 

the form     is in   for all    . 
 

1.6 Definition 

Let       be a fuzzy topological space,         . Then any fuzzy set    
   

contains    is called a neighborhood (nbd, for short) of    in      . The set of 

all neighborhoods of    will be denoted by,       . In general for any     , 

     denotes a fuzzy open subset of A contains  . 
 
1.7 Definition 
Let       be a fuzzy topological space,     . Then the closure(interior) of   is defined by: 

i) A          
         

ii)  
                   respectively. 

 

1.8 Proposition 

Let       be a fuzzy topological space,     and         . Then we have: 

i)   
  

 

 
    

  
 

 

ii)      
   there exists    

        such that    
  . 

iii)          
   , for all    

         

iv)           , for all   . 

Proof.  Stratiforward. 

 

In the following we recall the concept of the strong  -cut of any fuzzy subset of   as in [10]. 

1.9 Definition: For any     . We define,                         . 
 

1.10 Proposition  

Let            ,         and   is a finite index set. Then we have: 

i)                    , 

ii)                     . 

 

By using the Lemma (1.3),  it is easy to prove the following theorem. 
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1.11 Theorem  

a) Let        and          be a topological space on     . Then the following structures: 

                    and,
 

          
       

 
are fuzzy topologies on   generated by    

b) Let ),( A  be a fuzzy topological space on  . Then the following structures: 

     i)     BBS :)(  and,  

     ii)    A

BASB :)(][ , 

 are ordinary topologies on      generated by  . 

 

1.12 Proposition 

Let        ,           be a topological space on      and       a fuzzy topological space on  . 

Then: 

i)               

ii)         
      and then       , 

iii)      
 and      

 . 

Proof. Straightforward. 

1.13 Definition 

Let     . A topological space (    , τ ) is said to be an s-topological space on      iff, 

 τ contains    for all    . 
The following example shows the existence of s-topological space and shows that a topological space 

(    ,τ) need not be s-topological space and shows that the family,             need not be a 

topological space on     . 
1.14 Example 

Let           and                      . Then we have: 

i)        and                    . 
ii)                    is a topology on      but not s-topology. 

iii)                        is s-topology on       
iv)                                  is not a topology on       
 

1.15 Definition 

Let          be an s-topological space on     . Then a fuzzy subset   of   is said to be a fuzzy lower 

semi-continuous function on      if                     The set of all fuzzy subsets of   which is 

lower semi-continuous functions on      will be denoted by,                               
     . 
 

1.16 Proposition  

Let           be an s-topological space. Then the family       is a fuzzy topology on   and 

  ,      ) is called an induced fuzzy topological space by  . 

 

    Now one can easily prove the following lemma. 

1.17 Lemma 

Let          be an s-topological space on     ,     and       . Then we have: 

i)         iff               , 

ii)     iff    
         

iii)           for all    , 

iv)    
  

 
  

 
 , 

v)        

 
   . 

 

1.18 Definition  

A fuzzy topological space      is said to be a weakly induced iff, for every        
       for all    i.e. iff every element in   is a fuzzy lower semi-continuous function 

from             to   . 

 

Note: One of the advantages of defining topology on a fuzzy set lies in the fact that subspace topologies 

can now be developed on fuzzy subsets of a fuzzy set as follows: 

 

1.19 Definition[1,2] 

Let      be a fuzzy topological space and    . Then the family                 is a fuzzy 

topology on   and        is called a fuzzy subspace of      . 
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Note: If   is a maximal subset of  , then        is called a maximal subspace of       . 
 

 

1.20 Proposition[13,15] 

Let        be the maximal subspace of a FTS      . Then: 

i)    is closed in        if and only if       , where     
   

ii) For every     , we have        , where   ,    are closures of   in        and  

     , respectively. 

 

2. Fuzzy regularity axioms 

2.1 Definition  

A fuzzy topological space       is said to be: 

i) FR0-space iff               with        
 implies        , 

ii) FR1-space iff               with        
 implies there exist    

        and  

   
         such that    

      
. 

iii) FR2-space iff (           and       
   with        implies there exist    

        

  and          such that    
     . 

iv) FR3-space iff         
 with       implies there exist         and          

such that         . 

 

Note: FR2 (resp. FR3) spaces are those which are called fuzzy regular (resp. fuzzy normal) spaces and 

was introduced in [2] as an extension of its original concept in [8]. 

 

In the following we introduce some properties of FR0 space. 

2.2 Theorem 

    Let       be a fuzzy topological spaces,          and     
  . Then the following statements are 

equivalent: 

1)       is a FR0-space, 

2)       
       

         

3)         
    

          

4)        implies there exists         such that        . 

5)                      . 

6)         implies        

. 

Proof. 

1)  2) Let       

   
        

. By (ii) of Proposition (1.8) we have        
    

    

            
    

        (by (6) of Proposition (1.2)). 

2)  3) is obvious. 

3)   4) Let             
 
   
       

                          

4)   5) Let       
   
   there exists    such 

that             
       

                                .  

5)   6) and 6)  1) are obvious. 

 

2.3 Theorem  

The following implications hold: 

                               

Proof 

i) Let ),( A  be a FR3, FR0 and let x    G , G   . Then from (5) of the above theorem we have x


   . Since ),( A  is FR3, then there exist
x

O , GO  such that
x

O    GO . Take , 

x
O =

x
O , then 

x
O    GO  and hence  is FR2-space. 

ii) Let ),( A  be a FR2 space and let x    y . Then there exist
x

O and 

yO  such that  

x
O    yO . Take 

yO
yO 

x
O    yO . Hence ),( XL is a FR1 space. 

iii) Let ),( A  be a FR1space, y    
x

O  y 
x

O  y 
x

O 
x

O    y  x    y  and so there 

exist 


x
O , 


yO  such that



x
O    yO  y    x


 (by (iii) of Proposition (1.8)). So by (6) of 

Proposition (1.2)) we get x



 Xx OO  .Hence ),( A is    . 

2.4 Corollary 

G

),( A
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Let     be a fuzzy topological space. Then      is a FR1 if and only if                with 

       
 implies there exist    

     
   such that    

      
. 

Proof. Follows from the above implication and from (2) of Theorem (2.2). 

2.5 Lemma
 

 

Let         be a topological space,       Then we have: 

i)      
  for all          , 

ii)     
 

  

  
   

 
                    

Proof.  Obvious. 

2.6 Theorem 

 Let          be a topological space on     . Then        is FR0 if and only if          is a R0-space. 

  Proof. Let        be a FR0-space    . Then             
(by the above lemma) implies 

             
                                  (by (iii) of Proposition (1.8) )      (by the 

above lemma).  Hence         is a    -space. 

Conversely, let          be a R0 -space,         ince   x        . Then 

        
    

 , when        then clearly             
 (since          is

)..0  xx OOxeiR . Hence        is a FR0-space. 

 

2.7 Theorem   

Let          be a topological space. If         is    -space, then        is FR1-space. 

Proof.  Let          be a R1-space, withAFPyx )(,         . Then either     or (   ,  

        ).  
 (a) If     , then either     or    .  

 i) If     , then there exist          such that        .  Now we take    
    

     

     and    
    

     , then    
      

 . Hence        is FR1 space. 

  ii) If          , this case is excluded (since       is     . 

(b) If              , then we take    
     ,    

        to be the required 

neighborhoods. Hence        is a FR1-space. 

 

2.8 Theorem   

Let       be a     y to o ogica  s ace                  if and only if for all 

                                                 
  such          

           . 

Proof. Let       be a FR2 ,          and           . Then         
   there exist 

    
 N( x ) , G N(   

 ) such that     
    G  implies that    

    
    

     
        

      
. 

 Conversely, let          ,     
  be such that         . Then     

  i.e.   
  (  ), so there 

exists    
  such that    

           =  
  (by hypothesis)        

       and         
 .  Hence       is 

a FR2-space. 

2.9 Theorem  

Let       be a     y to o ogica  s ace             is    (normal) if and only if              there 

exists   
   s c  t at   

    . 
Proof.  The proof is analogous to the above proof.  

 

3. Fuzzy  separation  axioms 

 

3.1 Definition  

A fuzzy topological space       is said to be: 

i) FT0-space iff               with         implies there exists     
        such that 

   
      or there exists    

        such that    
      . 

ii) FT1-space iff               with         implies there exist    
        such that  

   
      and there exists    

        such that    
      . 

iii) FT2-space iff               with         implies thereexist    
        and  

   
         such that    

      
. 

iv) FT3-space iff it is FR2 and FT1-space. 

v) FT4-space iff it is FR3 and FT1-space. 

3.2 Theorem  

  Let ),( A be a fuzzy topological space. Then 0),( FTisA   if and only if ( x    y  implies 

x    y  or x    y ). 
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 Proof.  Let 0),( FTabeA   and )(, AFPyx  with x    y . Then there exists 
x

O  such that 

x
O    y x    y  or there exists 

yO such that x    yO  x    y (by (iii) of Proposition 

(1.8)).Conversely, let x    y  or x    y  x 

 yy     y  or 

y  
 xx     .x Hence ),( A

is a FT0 space. 

3.3 Theorem 

Let         be a topological space. Then ),( A is 0FT  if and only if          is 0T -space. 

Proof 

Let ),( A be a FT0-space and yx  . Then        , in particular               implies there exists 

      
    such that               

 or there exists       
    such that               

. 

Take            
    , then y         

  or take            
   , then x         

    Hence 

         is a 
0T -space. 

Conversely, let          be a 0T  and withAFPyx )(,  x    y . Then either yx   or  

( yx  , )(xA   ). If yx  , then there exists xO  such that y xO  or there exists yO  such 

that x yO . Now take    
    

     , then         

  or take    
    

     , then x       

 . Hence 

),( A  is a FT0-space. 

 If yx  , )(xA  , then we take    
        and    

        (by(i) of Proposition 

(1.12) ) to be the required neighborhoods. Hence ),( A is a    -space. 

3.4 Theorem 

Let ),( A be a fuzzy topological spaces. If 0),( FTisA  , then           is a 
0T -space.

 
Proof.  The proof is analogous to that of necessity of the above theorem. 

3.5 Theorem  

Let ),( A be a fully stratified fuzzy topological space. Then 0),( FTisA  if and only if           is a 

0T -space.
 

Proof.  Necessity, follows from the above theorem. 

Conversely, let           be a 0T -space and x    y  )(, AFPyx  . Then either yx   or ( yx  , 

)(xA   ). If yx  , then there exists         

      such that y xO  or there exists    

     

      such that x yO . Now take    
    

   , then         

   or take    
    

    , then
 x

      

 . Hence ),( A  is a FT0-space. 

If ( yx  , )(xA  ), then Take    
       or    

       (since ),( A  is fully 

stratified) to be the required neighborhoods. Hence ),( A is a    -space. 

3.6 Theorem  

Let ),( A be a fully stratified fuzzy topological space. If            is a
0T -space, then 0),( FTaisA  -

space.
 

Proof. Let           be a 0T  and x    y , )(, AFPyx  . Then either yx   or ( yx  , 

)(xA   ). If yx  , then there exists        such that y xO  or there exists        such that

x yO . Now take    
    

   , then         

  or take    
    

    , then x       

 . Hence 

0),( FTisA  . 

If yx  , )(xA  , then take     
       or    

       (since ),( A  is fully stratified) 

to be the required neighborhoods. Hence ),( A is a    -space.
 

3.7 Theorem  

Let ),( A be a fully stratified and weakly induced fuzzy topological space. Then            is
0T -space if 

and only if 0),( FTisA  space.
 

Proof. Necessity, follows from the above theorem. 

Conversely, let 0),( FTbeA  and yx  , then              . Since 0),( FTisA  , then there exists 

      
   such that               

or there exists       
   such that               

. Now take    

       
       or take           

       (since ),( A is weakly induced), then it is easy to see that

y xO  or x yO . Hence            is
0T -space. 

In the following theorems we study some properties of 1FT spaces. 

3.8 Theorem  

Let ),( A be a fuzzy topological space. Then the following statements are equivalent: 

i) ),( A is a FT1 space,  
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ii) )(, AFPyx   with x    y  implies x    y  and 
y    x , 

iii) x x  ,  x )(AFP . 

Proof. i)   ii) is clearly from (iii) of Proposition (1.8). 

i)  iii) Let x    y   there exists
yO such that x    yO this implies 

yO  Ax )( 
  , thus Ax )( 

  is open 

i.e. x  is closed  x x . And this is true for every x ).(AFP  
iii)  i) x x  x )(AFP and x    y .  Then x ,

Ay 
 . Since 

y    
 xOy   and 

 x   
 yOx  . Hence ),( A  is a FT1 -space. 

3.9 Theorem  

Let ),( A be a fuzzy topological space. If 1),( FTisA  , then           is a 
1T space. 

Proof. Let ),( A be a FT1 and )(ASx . Then )()( xAxA xx   and so 
)(xAx  this implies that 

(S  }{\)())( xASx xA  so }{x is closed for all )(ASx . Hence           is a 
1T space. 

3.10 Theorem  

Let ),( A be a fully stratified fuzzy topological space. Then 1),( FTisA  if and only if 

         is 1T -space. 

Proof.  Necessity, follows from the above theorem. Conversely, the proof is similar to 
that of Theorem (3.5). 
3.11 Theorem 

Let          be a topological space. Then          is 1T  if and only if ),( A is 1FT . 

Proof. Necessity, let          be a 1T -space and          ).(, AFPyx  Then either yx  or ( yx  , 

))(xA  . Now if yx  , then there exists xO such that y xO  and there exists yO  such that

x yO . Take    
    

     and   
    

    , then         

  and
 

x       

 . Hence ),( A is 1FT  space.  

If ( yx  , ))(xA  . Take    
        and    

        to be the required 

neighborhoods. Hence ),( A is a FT1- space.  

Conversely, let ),( A be a FT1-space Then          is a T1 –space (by Theorem (3.10)). But


  (by 

(iii) of Proposition (1.12)). Hence ( ,) is a T1-space. 

3.12 Theorem  

Let ),( A be a fully stratified fuzzy topological space. If            is
1T -space, then 1),( FTisA  space.

 
Proof.  The proof is analogous to that of Theorem (3.6). 

3.13 Theorem  

Let ),( A be a fully stratified and weakly induced fuzzy topological space. Then            is
1T -space if 

and only if 1),( FTisA  space.
 

Proof.  The proof is analogous to the proof of Theorem (3.7). 

 

The following example shows that the converse of Theorem (3.4) and Theorem (3.9) may not be true in 

general. 

3.14 Example 
Let        ,                  . Take                                Then   is a fuzzy topology 

on   and                     is a topology on      which is a 1T -space. 

But       is not a     -space. In fact           , but there is no      
 such that      

        and there is no 

     
 such that      

        . 

3.15 Theorem  

Let       be a fuzzy topological space. If       is a FT2 , then: 

         
 
 
     

         for all         . 

Proof. Let       be a FT2 space,         . Then for any        there exist    
     

   such that 

   
      

          
 for all     ( by (iii) of Proposition (1.8) ) and so,           

         
 (by 

(6) of Proposition (1.2)). But clearly        
 .  

Hence we get the result 

3.16 Theorem 

Let          be a topological space. If          is 2T -space, then ),( A is 2FT  space. 

Proof. Let ( ,) be a 2T -space ,           Then either yx   or ( yx  , )(xA  ).  

If yx  , then there exist xO  and yO such that yx OO  . Take    
    

     and  
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    , then   

       

 .
 

If ( yx  , ))(xA  , then take 



 AOx  and 


 AOy   to be the required  

neighborhoods. Hence ),( A is a FT2 -space.  

 

 Note: The Example (3.4) in [7] shows that the converse of the above theorem may not be true in general, 

where consider   an infinite set and      be an infinite maximal subset of  . 

 

The following example shows that, in general, a T2-space          need not imply that       be a FT2 

space. 
3.17 Example 

Let          be any T2-space and         
      . Then      which is a T2-space. But       is 

not a FT2 space. 

3.18 Theorem  

Let ),( A be a fully stratified fuzzy topological space. If )][),(( AS is a   -space, then ),( A is a 
2FT

space. 

Proof. The proof is similar to that of Theorem (3.6). 

 

3.19 Theorem  

Let ),( A be a fully stratified and weakly induced fuzzy topological space. Then            is a
2T -space 

if and only if 2),( FTaisA  -space.
 

Proof. Straightforward. 

3.20 Definition[2] 

A fuzzy topological space ),( A  is said to be a fuzzy 
2T -space if             with 

              such that             and       , (where       iff        ). 

3.21 Theorem  

Let ),( A be a fuzzy topological space. Then our 2FT -space is a fuzzy 
2T -space in the sense of the above 

definition. 

Proof.  Obvious and so is omitted. 

 

The following example shows that the converse of the above theorem may not be true in general.  

3.22 Example 

Let           and                        . Take                                        
                                                                 . Then   is a fuzzy topology on   which is a 

fuzzy 
2T space in the sense of Definition (3.20). But       is not     space in our sense. In fact             

but there do not exist any two members of   which not quasi-coincident referred to   members of  

  containing              . 

6.3.23 Theorem    

The following implications hold: 

 FT4FT3FT2FT1  FT0 

Proof.   

i) Let     be a FT4 space and       ,     
  . Then              . Since       is a FR3, then 

there exist    
,      such that    

     . Now Put    
    

 , then    
     . Hence       is a FT3-

space. 

ii) Let     be a FT3 space and         . Then              ,      
 . Since       is  

FR2, then there exist   
and    

 such that    
      

. Now Put       
 , then    

      
. Hence       

is a FT2-space. 

iii) Let      be a FT2 space and let         . Then there exist    
and    

 such that    
    

   
         

 and         
        

and         (by (iii) of Theorem (1.8)).  

Hence       is a FT1-space. 

iv) Obvious. 

 

From the above theorem and Theorem (2.3), we obtain the following results. 

3.24 Corollary 

The following implications hold: 

 

           FT4  FT3  FT2FT1FT0 

                                                    

      FR3FR0FR2FR1FR0any F-space. 
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4. Some Properties  

 

4.1 Theorem  
Let          be an s-topological space on      . Then: 

         is a   -space            is a    -space, where        . 
Proof. 

For    . Suppose          is R0-space. Let          and let    
      . Then       

     for 

any    . Since          is R0, then       
 
 

 for any    . It follows that      
  =  

   
          

  

for any    . It is easy to see that                  
 

             
           

           . 

Then       
 and so           is FR0 . 

Conversely, suppose           is a FR0-space ,        and let    
  . Then          

       . It 

follows that  
   
      

     

  and so     . Hence          is a R0-space. 

 

For    . Suppose           is a R1-space, withAFPyx )(,          . Then either 

    or (            ).  
 a) If    , then either     or     and so we have to cases: 

i) If    , then there exist          such that        . Put    
    

        and  

      
    

       , then    
   . Hence           is a FR1-space. 

ii) If      , this case is excluded (since          is     . 

b) If    ,         , then we put ,AOx 

  AOy 


      to be the required  

neighborhoods. Hence           is a FR1 space. 

Conversely, suppose           is a FR1 and     , then              
. Since         is FR1, then 

       
 ,       

       such that       
         

. Now put    (      
  

 
    

   

and   (      
  

 
    

  , then remains to prove that          

Suppose          
  

 
    

        
  

 
    

       
    

 

 
    and      

    
 

 
     

 

 
     

      
    . Now we have two cases. If 

 

 
     

 

 
      then        

          
     which contradicts to 

      
       

 . If 
 

 
     

 

 
     we get the same contradiction. 

 Hence          is a R1-space. 

 

For     Let          be a R2-space and          with           . Now for any     we have 

      . Since          is R2 and so there exists     such that         . It is clear that 

      
    

 
    

 
      

     

Conversely, suppose           is a FR2-space      . Then we have             and so there 

exists         such that              
  . Then                          

 
  . 

Hence          is a R2-space. 

4.2 Theorem    

Let          be an s-topological space. Then          is a   -space if and only if           is a    -

space, for        ,3. 

Proof. For    . Suppose          is a T1-space  and        . Then either yx   or  ( yx  ,

).)(xA   i) If yx  then there exists     such that       and there exists     such that 

     and so         

     
(say) and          

     
(say), where    

     
      .  

ii) If ( yx  , ))(xA  , then take ,AOx 

  AOy 


       to be the required 

neighborhoods. Hence                 -space.                         

Conversely, suppose          is a FT1-space and yx  . Then              belong to the range of  . 

In particular,  we have              . Hence there exists       
       such that       

         and there 

exists       
       such that               

. Thus for any          we have           
   

τ  and          
    . Hence          is a T1-space. 

The proof for the case     is similar to that of the case    of the above theorem. 

The proof for the case     is similar to the case     of the above theorem. 

For    . The proof  follows from the cases     of Theorem(4.1) and from case     of the above 

theorem. 

 

yO
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   Now, in the following theorems we will show that the axioms (   , for        ) and      , for 

       ,3) are hereditary referred to the class of maximal subspaces. 

4.3 Theorem  

Let      be a fuzzy topological space and   be a maximal fuzzy subset of  . If       is    , then the 

fuzzy subspace        is     , for        . 

Proof.  

As a sample we will prove the case      . Let       be a FR2-spasce ,        ) and   be a fuzzy 

subset of        with       . Then        
  

. Since   is a maximal fuzzy subset of  , then  
  

   

 
 
  and so          

 
              

 
                

Now if                   hence        
 
               

 
. If       , then       

  and so        
 
        . So       

 
. Since       is FR2 , then there exist    

 ,  
 

    such 

that    
    

 
  . Take    

     
      and     

 
       , then    

       (since   is a maximal 

fuzzy subset of  ). Hence        is a FR2-space. 

4.4 Theorem  

Let       be a fuzzy topological space and   be a maximal closed fuzzy subset of  . If       is    , 

then the fuzzy subspace        is    .  

Proof.  Obvious and so is omitted.  

4.5 Theorem  

Let       be a fuzzy topological space and   be a maximal fuzzy subset of  . If       is    , then the 

subspace        is     , for          . 

Proof. 

As a sample we will prove the case     . Let       be a FT0,            )  with        . Then  

         Since       is FT0, then there exists   
   such that    

      or there exists    
   such 

that    
     . Take    

     
      or     

     
     . Since   is a maximal fuzzy subset of 

 , then     
       or    

      . Hence        is a FT0-space. 

Remark  

If   any fuzzy subset of  , then the axioms (    , for          and (    , for            need not be 

hereditary properties.  

 

The following example shows the above remark. 

4.6 Example 

Let           and                        . Take                             

                    . Then   is a fuzzy topology on   which is     and    . Now let                  be 

any fuzzy subset of  . Then            and so        is a fuzzy subspace of       but it is not a    -

space. 
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