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Abstract. In this paper, we consider the approximate solution of the following problem 
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To solve this problem, we introduce a new nonstandard time discretization scheme. A proof of 

convergence of the approximate solution is given and error estimates are derived. The numerical 

results obtained by the suggested technique are compared with the exact solution of the problem. 

The numerical solution displays the expected convergence to the exact one as the mesh size is 

refined, the numerical solution displays the expected convergence to the exact one as the mesh 

size is refined.the numerical solution displays the expected convergence to the exact one as the 

mesh size is refined. 

Keywords. Integro-partial differential equation, Time discretization, Collocation B-spline, Nu-
merical methods. 

 

1. Introduction 

The principal aim of this paper is to describe an approximate solution for a parabolic 

integro-differential equation representing heat conduction in material with positive memory. 

Classically, a heat conduction phenomenon is represented by a parabolic partial differential 

equation with an infinite heat propagation speed; this is a puzzling contradiction to the physics. 

Indeed, the material property of the past influences on that of the present, and therefore the heat 

propagation can be better understood if it is represented by an integro-differential equation rather 

than it is modeled by the usual parabolic equations. 

mailto:amal_foad9@hotmail.com
mailto:ms_elazab@hotmail.com
mailto:amasayed@hotmail.com


     www.aasrc.org/aasrj                 American Academic & Scholarly Research Journal           Vol. 4, No. 2, March 2012 

 

2 

It is essential to take into account the effect of past history while describing the system as 

a function at a given time. Consider for example, a physical situation which gives rise to a para-

bolic partial integro-differential equation of the form 

fdrxrygrtky
t
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where nR  is a connected bounded domain with smooth boundary ,  is a feedback heat 

control in the interior of some heat conduction medium, where the control mechanism possesses 

some intertia or a similar control situation for a reaction-diffusion problem. In the analysis of 

space time dependent nuclear reactor dynamics, if the effect of a linear temperature feedback is 

taken into consideration and the reactor model is considered as an infinite rod, then the one group 

neutron flux ),( xty  and the temperature ),( xt  in the reactor are given by the following coupled 

equation (see [1]): 
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where a is the diffusion coefficient and )3,2,1(,,,,   icc igf  are physical quantities. 

By integrating the second equation in (1.4) in the interval ),0( t  and substituting it into the first 

equation, we obtain the following nonlinear integro-differential equation: 
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where β, b are the constants associated with the initial temperature and various physical parame-

ters. However, in the actual reactor systems, the temperature is a function of position ,x  which 

may be one, two or three dimensional. Thus it is more realistic to consider the heat equation for y 

in a higher dimensional spatial domain (see [2-5]). Here we consider a more general system of 

integro-differential equations of the form: 
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where   is a connected bounded domain in 
nR  with smooth boundary   and  
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The existence, uniqueness and asymptotic behavior of solutions of the system of the form (1.1)-

(1.3) have been studied in [3]. This problem governs many physical systems occurring in diffu-

sion problems and includes (1.4) and (1.5) as a special case. 
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In this paper, we study the equations which arise in many applications (e.g., [6, 7] and the 

references).  
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where  is a constant advection velocity and k a constant diffusivity, the integral is called 

memory term, ),( sxk  is the kernel function satisfying 
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Where A is sufficiently smooth in x and s, and the Hammerstein kernel 
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K is smooth function,  


  )()( sxsxK  is said to be weakly singular kernel. 

Solution of Integro-partial differential equations has recently attracted much attention of 

research. The motivation for such problems lies in different branches of physics, in rtheology, 

and especially in the theory of parabolic type. There are several methods for solving integro-

differential equations, in (1988) E. G. Yanik and G. Fairweather use finite element methods for 

solving integro-differential equation of parabolic type [8]. In (1989) M. N. Leroux and V. 

Thomèe use Numerical solution of semilinear integro-differential equations of parabolic type 

with non smooth data [9]. The stability of Ritz-Volterra projections and error estimates for finite 

element methods for a class of integro-differential equations of parabolic type is studied by Y. 

Lin and T. Zhang [10]. In (992), A. K. Pani, V. Thomèe, and L.B. Wahlbin use Numerical meth-

ods for hyperbolic and parabolic integro-differential equations [11]. Global and blow-up solu-

tions of a class of semilinear integro-differential equation, by Cui Shang-bin and Ma Yu-lan in 

(1994) [12]. I. H. Sloan and V. Thomèe, use Time discretization of an integro-differential equa-

tion of parabolic type [13]. 

Our contribution in this paper is to develop a new algorithm for solving partial integro-

differential equations in one dimensional space with non-homogeneous Dirichlet boundary condi-

tions. The suggested numerical scheme starts with the discretization in time by the 2-point Euler 

backward finite difference method. After that we deal with a combination of the compact finite 

difference method and the trapezoidal rule for calculating the integral term and then we use a col-

location method to compute the unknown function and finally the obtained system of algebraic 

equations is solved by iterative methods. The proposed technique is programmed using Matlab 

ver. 7.8.0.347 (R2009a). Toolbox based GA ver. 2.4.1. 

The paper is organized as follows: Section 2 is devoted to introducing the definition of the 

spline function. Section 3 is devoted to describe and analyze a time discretization scheme. The 

convergence of the discrete sequence of iterations is shown in Section 4. Section 5 concerns the 

error estimates for the approximate solution. The numerical solution of the partial integro-

differential equation by using the collocation method is stated in section 6. Finally, in Section 7, 
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the proposed scheme is directly applicable to solve some numerical example to support the effi-

ciency of the suggested numerical scheme. . Conclusions are drawn in Section 4. 

2. The Sixth-Degree B-Splines 

In this section, sixth-degree B-splines are used to construct numerical solutions to the par-

tial integro-differential problem discussed in section 4. A detailed description of B-spline func-

tions generated by subdivision can be found in [13]. Consider equally-spaced knots of a partition 

bxxxa n  10:  on ],[ ba . Let ][6 S  be the space of continuously-differentiable, 

piecewise, sixth-degree polynomials on .  That is, ][6 S  is the space of sixth-degree spline on 

.  Consider the B-spline basis in ].[6 S  The B-splines are defined in [13] as 
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where 

,,   i          ,         ihxBxBi 23)()( 0                         (2.1) 

To solve integro-partial differential equations, the iB  and their derivatives, evaluated at the nodal 

points, are needed. Their coefficients are given in Table 1. 

 

Table 1. Coefficients of 
i

B  and its derivatives. 

 ix  1ix  2ix  3ix  4ix  5ix  6ix  7ix  
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3. Notations, assumptions and definitions 

In this section we present several notations and assumptions that will be used in the sequel. 

We use the standard functional spaces )(2 L , )}(;{
)(

2 
k

WV   on   the sense of traces, 
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 )(; 2 LIC ,  )(; 22 LIL  (see e.g. [14], [15]). By  .,.  we shall denote either the inner prod-

uct in )(2 L  or the duality between V and V  (dual of V).  We denote by . ,  . , 


 . , the. 

norms in )(2 L , V, and V , respectively. All the constants which occur in the course of this pa-

per will be denoted by C ( ) is small and )( 1
  CC ). Also, we introduce some notations con-

cerning the time discretization of our problem. 
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We will assume, throughout this work, the following hypotheses on the given data. 

(H1)  The kernel ),,( utxK  is Lipschitz continuous in the variables t and u in the following 

sense: 

 ,),,(),,( 12121122 uuttCutxKutxK 
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and it satisfies 
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(H2)  )(200  LuVu  

Under these assumptions, we can define the variational solution of problem (1.11)-(1.13). 

Definition 2.1 The measurable function     ,,, 2  LICVILu  with     ,, 22
'  LILtu  and 

  00 u  in   2, LIC  is said to be a weak (variational) solution of (1.11)(1.13) if and only if 

the integral identity 
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holds for all  .,2 VIL  

 

4. The semidiscretization scheme. A prioi estimates 

Our main goal is to approximate (1.11)(1.13) from a numerical point of view and to prove 

its convergence. The suggested technique is based on the combination of the characteristics and 

Roth methods. Using a 2-point Euler backward differentiation formula for the time derivative and 
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then applying the characteristic method to compensate the convection term which is discretized 

explicitly so that the underlying equation is converted into a linear system of algebraic equations 

that easily solved numerically at each subsequent time level. To this purpose, let n be a positive 

integer. Subdivide the time interval I by the points 
it , where  iti , nT , ni  ,,1 ,0  . The 

suggested discretization scheme of problem (2.5) consists of the following problem (in the weak 

sense):  
Find niVtuz ii ,,1,)(.,   such that 
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5. The Spline-Collocation Method 

In this section a spline method for solving (4.6) is outlined, which is based on the colloca-

tion approach. Let )(xZi  be a function that approximates ),( itxz  for the time-level , iti  and 

is a linear combination of n+1 shape functions which is expressed as: 
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where  n
mmic

0
 are the unknown real coefficients, to be evaluated, and the )(xBm  are sixth-

degree B-spline. The approximate solutions )(xzi  for different time-levels are determined itera-

tively as follows. Starting with the time-level ,00 t  the value of ),( and),( 00 jj xzxz  for 

1,,2,1  nj   are known. Next, we will approximate the solution 1iz  for i = 0 in equation 

(4.6) by the shape functions ,1Z  as is given in equation (5.1). Hence equation (4.6) is approxi-

mated by: 
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Replacing 1Z  by the approximate solution given by equation (5.1) yields the following linear sys-

tem of 1n  equations  
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The system (5.4) consists of  1n  equation in the  1n  unknowns  n
mmc

01 
. To get a solution 

of this system we need two additional conditions. These conditions are obtained from the bound-

ary conditions (1.12) 
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The system (5.4), equations (5.5) and (5.6) consist of  1n  equations in  1n  unknowns; this 

system is of the form 
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Upon solving the system (5.7), the function )(1 xZ  is approximated by the sum: 
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Next, we find the approximate solution at time-levels ,, 21 tt  recursively by solving the follow-
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6. Numerical Results 

In this section, we shall solve integro-differential equation (1.11) in ).,0()1,0( TQT   We 

employ an explicit central difference scheme for the space derivative so that we get a full dis-

cretization scheme with an error estimation ).()( 2 OhO  The boundary and initial conditions 

we have used in this experiment are 0,0),1(),0(  ttutu   and 10)sin()0(  xxx,u   

for which the theoretical solution is )sin(
2

xet)u(x, tπ   , and )sin(),(
2

x t etxf t-π   and 
)(2

),( sx-πetxk   We shall compare the results obtained by the suggested approximation scheme 

(3.1)-(3.3) with the exact. It is observed that all the results of the proposed approximation scheme 

are in good agreement with the exact ones and exhibit the expected convergence. 
 

 

 

Table 2.  Comparison between exact and numerical solutions at 0.02t  , 1 , 0.0001   and 

0.01t  , 1 , 0.0001  , respectively. 

x 0.02t  , 1  0.0001   0.01t  , 1  0.0001   

 
Exact solu-

tion 

Suggested 

scheme 

error Exact solution Suggested 

scheme 

error 

0 0 0.000000 0 0 0 0 

0.17 4.104E-001 4.111E-001 6.353E-004 4.530E-001 4.537E-001 7.016E-004 

0.33 7.108E-001 7.115E-001 6.192E-004 7.846E-001 7.853E-001 6.842E-004 

0.5 8.208E-001 8.214E-001 5.702E-004 9.060E-001 9.066E-001 6.303E-004 

0.67 7.108E-001 7.114E-001 5.3021E-004 7.846E-001 7.852E-001 5.859E-004 

0.83 4.104E-001 4.108E-001 4.196E-004 4.530E-001 4.535E-001 4.635E-004 

1 0 0 0 0 0 0 

 

 

 

Table 3.  Comparison between exact and numerical solutions at 0.1t  , 1 , 0.00001   and 

0.5t  , 1 , 0.01  , respectively. 

x 0.1t  , 1 , 1  , 0.00001   0.5t  , 1 , 0.01   

 Exact solu- Suggested error Exact solu- Suggested error 
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tion scheme tion scheme 

0 0 0 0 0 0 0 

0.17 1.864E-001 1.864E-001 2.873E-005 3.596E-003 4.316E-003 7.196E-004 

0.33 3.228E-001 3.228E-001 2.786E-005 6.228E-003 6.794E-003 5.660E-004 

0.5 3.727E-001 3.727E-001 2.559E-005 7.192E-003 7.693E-003 5.013E-004 

0.67 3.228E-001 3.228E-001 2.380E-005 6.228E-003 6.696E-003 4.672E-004 

0.83 1.864E-001 1.864E-001 1.888E-005 3.596E-003 3.987E-003 3.912E-004 

1 0 0 0 0 0 0 

 

 

 

 

 

Table 4.  Comparison between exact and numerical solutions at 3.0t , 4.0 , 00005.0  

and 7.0t , 3 , 04.0 , respectively. 

x 3.0t , 4.0 , 00005.0  7.0t , 3 , 04.0  

 
Exact solu-

tion 

Suggested 

scheme 

error Exact solu-

tion 

Suggested 

scheme 

error 

0 0 0 0 0 0 0 

0.17 2.589E-002 2.591E-002 1.816E-005 4.995E-004 1.618E-002 1.568E-002 

0.33 4.484E-002 4.486E-002 1.818E-005 8.652E-004 1.822E-003 9.572E-004 

0.5 5.177E-002 5.179E-002 1.729E-005 9.990E-004 7.164E-004 2.826E-004 

0.67 4.484E-002 4.485E-002 1.694E-005 8.652E-004 7.362E-004 1.290E-004 

0.83 2.589E-002 2.590E-002 1.491E-005 4.995E-004 5.472E-004 4.767E-005 

1 0 0 0 0 0 0 

 

7. Conclusion 

A collocation B-spline method has been considered for the numerical solution of integro-

partial differential problems. The sixth-degree B-spline method was tested by problem. The 

method reduces the underlying problem to linear system of algebraic equations, which can be 

solved successively to obtain a numerical solution at varied time-levels. Numerical experiments 

which shown in the above scheme are good agreement with the exact ones. Moreover, the results 

in tables 1-4 and confirm that the numerical solutions can be refined when the time-step τ is re-

duced, or the number of nodes is increased. 
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