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          Abstract. A new finite difference scheme (Log FDM) improved for solving the linear or   non linear 

higher order paritial differential equations. in this paper we will solve the (KdVB) equation. A comparison 

between The classical explicit finite difference method (FDM), exponential finite difference method (Exp FDM), 

the new suggested scheme (Log FDM) and the corresponding analytic solutions is done. 
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1 Introduction  

          The Korteweg de Vries Burger equation have especial importance as it describe various physical 

phenomenas. The KdVB equation represent a mix of two important equations the Korteweg–de Vries equation 

(KdV)  and Burger equation. The KdV describe the behavior of long waves in shallow water waves and waves of 

the plasma. It was discovered by Korteweg–de Vries in 1895. As it is an important equation many papers try to 

present it's analytic or numerical solutions. Adomian decomposition method (ADM) used in solving it in [1], 

Variational iteration method (VIM) [2], Homotopy perturbation method (HPM) [3] and many other analytical 

solution methods such as inverse scattering transform (IST) [4] and traveling wave solution [5]. The Burger's 

equation is a special case of the KdVB equation has been found to describe various kind of phenomena such as a 

mathematical model of turbulence [6] and the approximate theory of flow through a shock wave traveling in 

viscous fluid [7]. Fletcher using the Hopf–Cole transformation [8] gave an analytic solution of the system of two 

dimensional Burger's equations, Several numerical methods of this equation system have been given such as 

algorithms based on cubic spline function technique [9], applied an explicit–implicit method [10], implicit finite-

difference scheme [11]. Soliman [12] used the similarity reductions for the partial differential equations to 

develop a scheme for solving the Burger's equation. As far as we know that little numerical works has been done 

to solve the KdVB equation. Recently a numerical method proposed for solving the KdVB equation by Zaki 

[13], he uses the collocation method with quintic B-spline finite element. The author [14] use the collocation 

solution of the KdV equation using septic splines as element shape function. Very recently Kaya [15] implement 

the Adomian decomposition method for solving the KdVB equation. 

2 Derivation of KdV Burger equation and discussion 

 

          Consider an unmagnetized and collisionless plasma comprising of cold ions, isothermal positrons and 

superthermal electrons. We assume that the phase velocity of ion-acoustic wave is much smaller than the 

electron and positron thermal velocities and larger than the ion thermal velocity, so we therefore ignore the 

electron and positron inertia and write down the equation of motion for the ions. Such plasmas are described by 

the following normalized equations 
  

  
 
     

  
                                                                                                                           

     

  
  

     

  
 
  

  
  

   

   
                                                                                      

   

   
                                                                                                                           

 

where   is the ion number density,   is the ion fluid velocity,   is the kinematic viscosity and   is 

electrostatic potential. To model the effects of superthermal electrons, we have  
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The parameter   shapes predominantly the superthermal tail of the distribution and the normalization has been 

provided for any value of      . In the limit    , superthermal distribution reduces to the Maxwell–

Boltzmann distribution. The positrons are assumed to be in thermal equilibrium, with the density 

   
 

   
                                                                                                                            

 

In (2.1), the densities of the plasma species are normalized by the unperturbed ion density    , the ion velocity is 

normalized by the ion acoustic speed         , space variables are normalized by the electron Debye length 

           
  , time variable is normalized by the electron plasma period            

   and 

electrostatic potential is normalized by the quantity       . The coefficient of kinematic viscosity   is 

incorporated in the parameter,   
 

    
 . Also,           represents the positron concentration in e–p–i 

plasma and        , is the temperature ratio of electron to positron. In order to investigate the propagation of 

ion acoustic shock waves and to derive the required KdVB equation in our e–p–i plasma, the independent 
variables are stretched as 

                                                                                                             
and the dependent variables are expanded as 

             

                                                                                                                                    
           

where   is a small parameter which characterizes the strength of the nonlinearity, and   is the phase velocity of 

the wave. Now, substituting (2.7) into (2.1), (2.2) and (2.3), using (2.6) and collecting the terms in the different 

powers of  , we obtain the following equations at the lowest order of   

 

   
  
 
                 

  

 
             

 

   
    

    

    
                                           

and for the higher orders of , we have 

  
   

  
 
   
  

 
       

  
 
   

  
                                                                                

  
   

  
 
   
  

 
   

  
   

   
  

   
    
   

                                                                 

    

   
 

 

   
    

    

    
    

 

      
 
            

       
       

     

Finally the KdV–Berger equation is derived from (2.9) 

   

  
    

   

  
  

    

   
  

    

   
                                                                            

Where 

  
 

 
 
 

 
 

  

     
     

            

       
     

  

 
      

  
 
                       

 

3 Explanation of  Logarithmic finite difference method (LFDM).  
 

          Consider the KdVB equation has the form [15] 

 

                                                                                                 

With the exact solution,  

       
   

    
        

 

   
   

   

   
    

 

 
      

 

   
   

   

   
          

where  ,   and   are positive parameters. Eq.(3.1) is called the Korteweg-de Vries Burgers equation which 

derived by Su and Gardner [16], when the parameter    , Eq.(3.1) will be the KdV equation and when the 

parameter    , Eq.(3.1) will be Burger's equation. In our study, we will investigate three cases, the first one is 

the KdVB equation, the second one is the KdV in case of     and the third one is Burger's equation in case of 

   .  
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In FDM the domain discretized to a finite number of points forming a mesh with horizontal step size   
   

 
     

the number of intervals,       and the time step  . The derivatives replaced by a difference formulas as 

follows,  
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and For          

     
  

   
 
      

 
     

 

  
  

      
  

   
 
      

 
      

 
     

 

  
                                                                                

       
  

   
 
       

 
       

 
       

 
      

 

   
  

We assume that      be any continuous function multiply Eq.(3.1) by the derivative of   leads the following 

equation:  

  

  

  

  
                                                                                                   

  

  
                                                                                                          

The usual difference formula for 
  

  
 leads to, 

    
         

        
       

 
     

 
        

 
         

                                      

To obtain the Log FDM consider          then         =      Eq.(7) becomes, 

    
         

           
 
      

 
        

 
         

                                    

Then    
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In Eq.(3.9)  if we choose             then       
 

 
 which is the Exponential finite difference method (Exp 

FDM) that is developed by Bhattachary [17-18] and used to solve one dimensional heat conduction in a solid 

slab.  

 

4 Numerical Experiments. 

 

Case 1 

          For purpose of illustration of the LFDM for solving the KdVB equation, -10      in case of       

 =2,      take     and          for the KdVB equation, we start with an initial approximation, 

       
   

    
         

 

   
   

 

 
      

 

   
    

 

Table 1.1 the solution of KdVB equation at       

x FDM EXP FDM Log FDM Exact 

-10 1.9193820973 1.9193550075 1.9193820973 1.9193550075 
-9 1.9186508551 1.9185900766 1.9186508551 1.9185900766 

-8 1.9170781148 1.9169441558 1.9170781148 1.9169441558 

-7 1.9137435172 1.9134583231 1.9137435171 1.9134583231 

-6 1.9068234824 1.9062424733 1.9068234823 1.9062424733 

-5 1.8929203876 1.8917806431 1.8929203874 1.8929203876 

-4 1.8661903047 1.8640657581 1.8661903040 1.8640657581 

-3 1.8177544627 1.8140506576 1.8177544607 1.8140506576 

-2 1.7364516837 1.7305177966 1.7364516788 1.7305177966 

-1 1.6122083588 1.6036178286 1.6122083486 1.6036178286 

0 1.4418368221 1.4307400490 1.4418368052 1.4307400490 

1 1.2339227517 1.2211948853 1.2339227296 1.2211948853 
2 1.0081037419 0.9950816625 1.0081037189 0.9950816625 

3 0.7879751376 0.7759397630 0.7879751179 0.7759397630 

4 0.5925611879 0.5823385611 0.5925611736 0.5823385611 

5 0.4318061237 0.4236810786 0.4318061146 0.4236810786 

6 0.3071262349 0.3009836845 0.3071262296 0.3009836845 

7 0.2145666808 0.2100895962 0.2145666780 0.2100895962 

8 0.1479869849 0.1448078112 0.1479869834 0.1448078112 

9 

10 

0.1011447626 

0.0686836668 

0.0989325535 

0.0671786536 

0.1011447619 

0.0686836665 

0.0989325535 

0.0671786536 

 

Case 2 

          Consider the KdV equation of the form,                          . In this case        

 =0,      take       and          for the KdV equation, we start with an initial 

approximation,                    . The equation have the exact solution                         

 

Table 1.2 the solution of KdV equation at       

x FDM EXP FDM Log FDM Exact 

0.0 -1.999801243 -1.999801244 -1.999801245 -1.9968034102 

0.1 -1.984675744 -1.984675787 -1.984675830 -1.9928172448 

0.2 -1.930883275 -1.930883468 -1.930883648 -1.9496613041 

0.3 -1.841695208 -1.841695556 -1.841695849 -1.8706675641 

0.4 -1.724408429 -1.724408927 -1.724409287 -1.7616545412 

0.5 -1.586474727 -1.586475311 -1.586475653 -1.6300551422 

0.6 -1.436139102 -1.436139695 -1.436139954 -1.4839178553 

0.7 -1.281149717 -1.281150256 -1.281150407 -1.3309915249 

0.8 -1.128087401 -1.128087849 -1.128087906 -1.1780406596 
0.9 -0.982018506 -0.982018853 -0.982018846 -1.0304505064 
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1.0 -0.846435144 -0.846435396 -0.846435357 -0.8921038894 

1.1 -0.723399404 -0.723399579 -0.723399531 -0.7654646012 

1.2 -0.613799344 -0.613799461 -0.613799416 -0.6517870265 

1.3 -0.517640085 -0.517640160 -0.517640124 -0.5513797624 

1.4 -0.434318776 -0.434318823 -0.434318796 -0.4638703825 

1.5 -0.362856379 -0.362856408 -0.362856389 -0.3884396260 

1.6 -0.302077304 -0.302077321 -0.302077309 -0.3240107763 

1.7 -0.250738996 -0.250739007 -0.250738999 -0.2693919851 

1.8 -0.207618962 -0.207618968 -0.207618963 -0.2233761592 

1.9 -0.171563982 -0.171563986 -0.171563983 -0.1848060415 
2.0 -0.141539172 -0.14153917 -0.141539172 0.15261267402 

  

Case 3 

          Consider the Burger's equation of the form                                 with       

 =2,      take     and         for the Burger's equation, we start with an initial 

approximation,          . The equation have the exact solution         
  

    
. 

Table 1.3 the solution of Burger equation at         

x FDM EXP FDM Log FDM Exact 

-10 -19.6077669804 -19.6078050637 -19.6085122058 -19.6078431372 

-9 -17.6469902823 -17.6470245573 -17.6475940923 -17.6470588235 

-8 -15.6862135843 -15.6862440509 -15.6866908180 -15.6862745098 

-7 -13.7254368862 -13.7254635446 -13.7258023940 -13.7254901960 

-6 -11.7646601882 -11.7646830382 -11.7649288306 -11.7647058823 

-5 -9.80388349020 -9.80390253187 -9.80407013935 -9.80392156862 

-4 -7.84310679216 -7.84312202549 -7.84322633116 -7.84313725490 

-3 -5.88233009412 -5.88234151912 -5.88239741710 -5.88235294117 

-2 -3.92155339608 -3.92156101274 -3.92158340825 -3.92156862745 
-1 -1.96077669804 -1.96078050637 -1.96078431565 -1.96078431372 

0 0.0 0.0 -0.00000001504 0.0 

1 1.960776698040 1.960780506374 1.960769076417 1.960784313725 

2 3.921553396081 3.921561012749 3.921523353708 3.921568627450 

3 5.882330094122 5.882341519124 5.882262670352 5.882352941176 

4 7.843106792162 7.843122025499 7.842987015222 7.843137254901 

5 9.803883490203 9.803902531874 9.803696377181 9.803921568627 

6 11.76466018824 11.76468303824 11.76439074507 11.76470588235 
7 13.72543688628 13.72546354462 13.72507010774 13.72549019607 

8 15.68621358432 15.68624405099 15.68573445403 15.68627450980 

9 

10 

17.64699028236    

19.60776698040 

17.64702455737 

19.60780506374 

17.64638377222 

19.60701805203 

17.64705882352 

19.60784313725 

 

All computations are done by using Mathematica package at         

Conclusion  

          In this paper we have investigated The Log FDM, it is an effective method for solving linear or non linear 

partial differential equations for small times. In this work it used in solving  KdVB, KdV and Burger equations. 

A comparison between Log FDM, Exp FDM, the classical FDM and the exact solution is done for every case. 

The numerical results show that the solution by Log FDM give a high accuracy very closed to the analytic 

solution and no more conditions or restrictions are needed.    
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