
American Academic & Scholarly Research Journal aasrj
ISSN 2162-3228 Vol 12, No 4, Sep. 2020

28

USING BRIAND’S PROPERTIES TO

 THEORETICALLY VALIDATE LI

INHERITANCE METRICS

Amany Mohammed Al Luhaybi

Computer Science Department, Faculty of Computing & Information Technology, King

Abdulaziz University, Jeddah, Saudi Arabia

E-mail: amanymuhammed91@gmail.com

Wajdi Aljedaibi
Computer Science Department, Faculty of Computing & Information Technology, King

Abdulaziz University, Jeddah, Saudi Arabia

E-mail: waljedaibi@kau.edu.sa

Abstract:Theoretical validation of metrics meant to ensure that the metrics work as it

should be and measure what it intended to measure. There are a lot of validation techniques,

most Object Oriented metrics where validated against Weyuker’s property, However,

Weyuker’s property been criticized by number of researchers when it used to validate OO

metrics. This paper will present theoretical validation using Briand’s et al length and size

properties of Li inheritance metrics which are Number of Ancestor Classes (NAC) and

Number of Descendent Classes (NDC), who came up with new OO metrics, which measure

different attributes such as Coupling, Complexity and Size, after finding out the limitation

in Chidamber- Kemerer measures suite of object-oriented design.

Keywords —Object-Oriented, Inheritance Metrics, Briand’s Properties, Metric

Evaluation.

I- Introduction

Software measuring gained a lot of attention as it’s a good way to predict, manage

and ensure its quality. Software metrics been used widely, a new metrics are

generated duo the limitations of some other metrics, so this field is always growing

as it is important to improve the development of software. There are a number of

objectives of these metrics [1][2] like understanding, software examination,

planning, optimization and quality improvement. Based on the uses of these

metrics they can be classified into different categories [3] like metrics for analysis

model, metrics for design model, metrics for source code, metrics for testing,

metrics for quality assurances etc.

There are different types of metrics as it is illustrated in Fig.1 below, this paper

will discuss Li metrics of inheritance metrics a type of object oriented metrics, and

the validation of the two inheritance metrics against Braind’s et al properties of

length and size. which are [4] Number of Ancestor Classes (NAC) and it measures

total number of ancestor classes from which a class inherits in the class inheritance

hierarchy. The other metric is Number of Descendent Classes (NDC) and it is the

total number of descendent classes (subclasses) of a class. These OO metrics where

proposed by Li after finding some deficiencies in Chidamber-Kemerer metrics [7]

after they been validated using Kitchenham technique, and here is an important

advantage of the theoretical evaluation as it may lead to creation of new metrics as

it happened with Li.

mailto:amanymuhammed91@gmail.com
mailto:waljedaibi@kau.edu.sa

American Academic & Scholarly Research Journal aasrj
ISSN 2162-3228 Vol 12, No 4, Sep. 2020

29

Fig.1. Types of Metrics [5].

The paper’s organization is as follows: section II is the background divided into

multi subsections which are: A. Li Metrics, B. Weyuker’s Properties Critiqued by

Other Researchers, C. Metrics that Been Validated Using Briand’s Properties.

Section III contains the Briand’s et al Length and Size Properties that is used for

validating inheritance metrics. Section IV is where the details Validation of NAC

and NDC is taking place. Section V is the Conclusion.

II. Background

A. Li Metrics

In order to repair the deficiencies been found in some of the famous OO

Chidamber-Kemerer metrics which can be found in [4]. Wi Li created six OO

metrics as well, which will be briefly discussed below [4]:

 Number of Ancestor Classes (NAC)

Definition: NAC measures the total number of ancestor classes from which a class

inherits in the class inheritance hierarchy.

The NAC values for class A and B in both Fig. 2(a) and (b). In Fig. 2(a), class A

inherits from classes C and E, so the NAC values is NAC(A)= 2 ; class B inherits

from three classes (C, D, and E), thus, yielding NAC(B)= 3. In Fig. 2(b), class A

inherits from one class (C), thus, yielding NAC(A)= 1; class B inherits from three

classes (C, D, and E), therefore, yielding NAC(B)= 3.

American Academic & Scholarly Research Journal aasrj
ISSN 2162-3228 Vol 12, No 4, Sep. 2020

30

Fig. 2. Inheritance trees with single and multiple roots. [4]

 Number of Descendent Classes (NDC)

Definition: The NDC metric is the total number of descendent classes

(subclasses) of a class.

 Number of Local Methods (NLM)

Definition: The NLM metric is the number of the local methods defined in a

class which are accessible outside the class (e.g. public methods in C++).

 Class Method Complexity (CMC)

Definition: The CMC metric is the summation of the internal structural

complexity of all local methods, regardless whether they are visible outside the

class or not (e.g. all the public and private methods in C++).

 Coupling Through Abstract Data Type (CTA)

Definition: The CTA metric is the total number of classes that are used as

abstract data types in the data- attribute declaration of a class.

 Coupling Through Message Passing (CTM)

Definition: The CTM metric measures the number of different messages sent

out from a class to other classes excluding the messages sent to the objects

created as local objects in the local methods of the class.

B. Weyuker’s property critiqued by researchers

Weyuker suggested nine properties as Table 1 illustrated to validate metrics they

can be found in details in [8], but they were for traditional programming or as it

known procedural programming, therefore, the Weyukers never meant to be used

for OO metrics validation so it may not be applicable to some of OO metrics, and

it’s only reasonable to search for another validation method.

American Academic & Scholarly Research Journal aasrj
ISSN 2162-3228 Vol 12, No 4, Sep. 2020

31

Moreover, Weyuker’s properties been used to validate the famous OO metrics

Chidamber-Kemerer [7] so the Weyuker properties were generalized to be used

or got accepted as validation method for all object oriented metrics.

Table 1. Weyuker’s Properties

The generality of the first four properties of Weyuker leads to the assumption that

they can be meet in any reasoning metrics. The fifth property is monotonic. It states

that the metric value for the combination of classes/components is always greater

than the metric value for any of components/classes. This is logical to happen, as

if we increase the number of methods in the code the complexity is supposed to

increase as well. But the Number of Catch Blocks per Class (NCBC) metric

proposed by Aggarwal et al [9] doesn’t satisfy this property [10]. Weyuker’s

property seven states that permutations of program statements can change the

metric value. However, it may get important if the class complexity is calculated

by the adding the method complexities since the order of statements are important

in this case. Weyuker’s ninth property saying that the intersection between two

classes/components can increase the value of the complexity metrics

C. Metrics that Been Validated Using Briand’s Properties.

There are a number of OO metrics that been validated against Briand’s et al

properties such as inheritance metrics of Chidamber-Kemerer. [6] which are Depth

of Inheritance Tree Class (DITC) metric and Class Inheritance Tree (CIT) metric.

Also some other metrics that the final result of their evaluation can be found in

Table 2 [6]. Such as Lines of Code (LOC), Number of Concrete Classes defined in

a system (NOC), Number of Methods defined in a class(NOM), Number of

Attributes defined in a class (NOA), Number of occurrences of a keyword in a

program (NOK), Number of occurrences of arithmetic operators in a

program(NOAOP) and so on.

American Academic & Scholarly Research Journal aasrj
ISSN 2162-3228 Vol 12, No 4, Sep. 2020

32

Table 2. Theoretical validation results of some metrics against Briand’s et al size

and length properties. [√: means metrics satisfy the property, ×: when metric

doesn’t satisfy the property]

Metric S1, L1 S2, L2 S3 L3 L4 L5

LOC √ √ √ √ √ ×

NOC √ √ √ √ √ ×

NOM √ √ √ √ √ ×

NOA √ √ √ √ √ ×

SIZE2 √ √ √ √ √ ×

NOK √ √ √ √ √ ×

NOAOP √ √ √ √ √ ×

Class-Leaf Depth (CLD) √ √ × √ √ √

Reuse Ratio (RR) √ √ × √ √ ×

Specialization Ratio (SR) √ √ × √ × ×

DIT √ √
×

√ √ √

Fandown

√

√
√

√
√

×

Fanup √ √ √ √ √ ×

NIA √ √
√

√ √ ×

NIM √ √ √ √ √ ×

NoVM

√

√
√

√
√

×

DITC √ √ √ √ √ ×

CIT √ √ × √ √ ×

ICC √ √ × √ √ ×

ICT √ √ × √ × ×

American Academic & Scholarly Research Journal aasrj
ISSN 2162-3228 Vol 12, No 4, Sep. 2020

33

III. Briand’s et al length and size properties

A. Size property

There are three properties lies under it which are non-negativity so the size is

always positive, the second property is null value, when there are no elements in

the system we expect to have zero as its size, the last property is Module Additivity

when modules do not have elements in common, we expect size to be additive.

Properties can be found summarized in Table 3 [6].

Table 3. Size properties

B. Length property

It has 5 properties which can be found summarized in Table 4 [6]. Property 1

and 2 are the same as size properties which are the length is either positive

value or zero. Property 3 indicates when we add new relationships between

the component of the systems like attributes and methods doesn’t increase the

system size. Property 4 if the system is made of two modules then adding

relationships between these two modules will increase its length. Property 5

is if we have two modules that will create the system then the system’s length

can be calculated as the maximum length of these two modules.

American Academic & Scholarly Research Journal aasrj
ISSN 2162-3228 Vol 12, No 4, Sep. 2020

34

Table 4. Length properties

IV. Theoretical validation

A. Number of ancestor classes (NAC)

The NAC metric calculated as counts the number of nodes reachable from a node

within the tree (i.e., a class), or the number of all ancestor classes that affect that

particular class [11].

 Properties S1, S2, L1 and L2

It can be clearly seen from the definition that these properties are satisfied by the

NAC metrics. As the fig2 (a) or (b) shows at particular class it either has a positive

value if it inherits from other classes or it could be a zero value if it doesn’t.

 Property S3 and L5

NAC satisfy S3 property, as it can be proven in fig.3 as the following:

NAC(D)=2

NAC(C)=1

NAC(C+D) = 3

Therefore, NAC(D)+ NAC(C)= 2+1=NAC(C+D) = 3

So the size of the system is equal to the sum of its modules. Therefore, the system

which is made of the joining of the two modules M1 and M2 doesn’t equal to the

maximum of the lengths of its modules so it doesn’t satisfy the property L5.

American Academic & Scholarly Research Journal aasrj
ISSN 2162-3228 Vol 12, No 4, Sep. 2020

35

Fig.3. Two disjoint modules M1 and M2 and system after joining the modules.

 Property L3

NAC satisfy this property. As adding new relationships between the inner

components of one single module will not effect the metric value like adding new

connections between the attributes or methods within the class will not cause to

increase the length of the module.

 Property L4

NAC satisfy this property. As adding new relationships from element in M1 to

element in M2 will cause to increase the length of the system therefore, the value

of the metric will be effected, mainly will be increased.

B. Number of Descendent Classes (NDC)

The metric counts the number of nodes reachable from a class, and considers

all descendent classes that affect that particular predecessor class [11].

 Properties S1, S2, L1 and L2

It can be clearly seen from the definition that these properties are satisfied by the

NDC metrics. As the fig2 (a) or (b) shows at particular class it either has a positive

value if it affects other subclasses or it could be a zero value if it doesn’t.

 Property S3 and L5

NDC satisfy S3 property, as it can be proven in fig.4 as the following:

NDC(A)=2

NDC(E)=1

NDC(A+E) = 3

Therefore, NDC(A)+ NDC(E)= 2+1=NDC(A+E) = 3

So the size of the system is equal to the sum of its modules. Therefore, the system

which is made of the joining of the two modules M1 and M2 doesn’t

equal to the maximum of the lengths of its modules so it doesn’t satisfy the property

L5.

American Academic & Scholarly Research Journal aasrj
ISSN 2162-3228 Vol 12, No 4, Sep. 2020

36

Fig.4. Two disjoint modules M1 and M2 and system after joining the modules.

 Property L3

NDC satisfy this property. As adding new relationships between the inner

components of one single module will not effect the metric value like adding new

connections between the attributes or methods within the class will not cause to

increase the length of the module.

 Property L4

NDC satisfy this property. As adding new relationships from element in M1 to

element in M2 will cause to increase the scope of inheritance, therefore, the length

of the system will be increased so the value of the metric will be effected, mainly

will be increased.

V. Conclusion

This paper contains a theoretical validation of Inheritance Metrics proposed by Li

against the length and size properties of Briand et al. And it shown that for both

NAC and NDC the metrics satisfy all size properties, but for the length properties

it satisfies all except the L5 property. Table 5 shows the results and the contribution

of this paper (the mark √ means satisfy and X means it doesn’t satisfy it).

The future work will cover the whole Li suite metrics to be validated using other

prosperities of Briand et al

Table 5. Evaluation result.

Metric S1, L1 S2, L2 S3 L3 L4 L5

NAC √ √ √ √ √ X

NDC √ √ √ √ √ X

American Academic & Scholarly Research Journal aasrj
ISSN 2162-3228 Vol 12, No 4, Sep. 2020

37

References

Manik Sharma , Gurdev Singh “Static and Dynamic metrics- A Comparative

Analysis”, Emerging Trends in Computing and Information Technology 2011.

 Tu Honglei , Sun wei, Zhang Yanan, “The Research of Software metric and

software complexity metrics” International Forum on Computer Science

Technology and Applications(2009) Publisher: IEEE, Pages: 131-136

Roger S. Pressman “Software Engineering-A Practitioner’s Approach” 6th

Edition, McGraw Hill International Edition pp 466-472

Wei Li .(1998). Another metric suite for object-oriented programming.

The Journal of Systems and Software 44, 155-162

P.Ashok Reddy, Dr.K.Rajasekhara Rao & Dr.M.Babu Reddy.(2015).

Performance Evaluation of Procedural Metrics and Object Oriented

Metrics. International Journal of Research Studies in Computer Science

and Engineering (IJRSCSE), PP 69-72.

Rajnish, K., 2014, “Theoretical Validation of Inheritance Metrics for Object-

Oriented Design against Briand’s Property,” International Journal of

Information Engineering and Electronic Business, 3, pp. 28-33.

Chidamber, S.R and Kemerer, C.F.:A Metric Suite for Object Oriented

Design,, IEEE Transactions on Software Engineering, vol. 20, no. 6, pp. 476-

493, (1994).

Weyuker, E. J.: Evaluating Software Complexity Measure. IEEE Transaction

on Software Complexity Measure, 14(9), pp. 1357-1365,(1988).

Aggarwal K.K., Singh,Y. Kaur, A. and Melhotra, R.: Software Design

Metrices for object orinted Software, Journal of Object Technology,

vol.6.no.1. pp. 121-138, (2006).

Misra S., Akman I. (2008) Applicability of Weyuker’s Properties on OO

Metrics: Some Misunderstandings, Journal of Computer and Information

Sciences, 5(1) pp. 17-24

Sheldon, Frederick T., and Hong Chung. "Measuring the complexity of class

diagrams in reverse engineering." Journal of Software Maintenance and

Evolution: Research and Practice 18.5 (2006): 333-350.

