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Abstract. In this work, a Nonlinear Infinitely Space of Neutral Functional Differential
Systems with Distributed Delays in the Control of the form:

0
%(D (t,x)] = L(t, x)x, + f A(t,0)x(t+6)do + f(t,x;)

0
+f [de H(t,0)]u(t + 6) (1.1
-h

is presented for controllability analysis .We linearize the system (1.1) and obtain an
expression for the solution of the system using the Unsymmetric Fubini Theorem as in the
paper of J.Klamka (1996). The set functions — reachable set, attainable set, target set upon
which our studies hinged were extracted. We derived the form of the optimal control of the
system 1.1) and expressed same using the definition of the signum function.

Key Words: Signum function, Reachable set, Attainable set, Controllability index, optimal
control, Linearization Nonlinear System, Unsymmetric Fubini Theorem.
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INTRODUCTION:

Systems with delay in the control, however pose the obvious challenge of how to handle the lags
in the control and have provided multiple interest on the subject of controllability. They have
diversified current thinking to accommodate the configuration of the complete state
2(8) = {(x(6), ug)
as it is transferred from the initial complete state to the final state with the pair (x(t), u;)
changing values simultaneously to open up the area of study known as absolute controllability
with zero in the interior of the reachable set. While the spontaneous interest in the transfer of
the state system at (xo,uto)from initial time ty, to the state x(t,) at time t, using any control

gives impetus to the subject of relative controllability
Sebakby and M. N.Bayourni (1973)blazed the trail by considering a finite set of first order
dif ferential equations of the form:

% x(®) =A@ x@®)+ B U®) + CH)U(t—h)

Where, A(t), B(t)and C(t) are nxn,nxm and nxm, matrices respectively and h > 0 is the
delay time. They obtained a rank condition for controllability of the system which is rank
[B,AB,A?B,...,A"'B,C,AC,A%C, ..., A" 1C] = n.

This result has since been extended to systems with multiple delays

(see A.W.0lbrot (1972)).

The minimum energy control problem was addressed by J. Klamka

(1976)and J.U. Onwuatu (1990)and provided algebratic conditions for the relative

controllability on the linear time varying system of the form:
0

() = AD)x(©) + f [dg H(t, 5)] u(t + 5).

-h

Onwuatu in the same paper provided conditions for the relative null controllability of the
system. He show that,if the system is relatively controllable on [ty, t;], with zero solution of the
free part being uniformly asymptotically stable that the system would be relatively null
controllable with constraint control. TheagwamV.A (2005), investigated the relative as well
as absolute controllability of Ordinary Dif ferential Systems with distributed delays in the
control of the form:

0
x(t) = A@)x(t) + f [ds Ht, )] u(t +5) + £ (tx(@),ul®),ult —h)).
-h

Our principal objective is to investigate the form of the optimal control of the system of

the form:
0
% D(t,x;) = L(t, x)x; + f_wA(t)x(t +0)do
0
+ f(t,xt) + f [deg H(t,8)] u(t +6) (1.1)
-h

and with zero in the interior of the reachable set using controllability standard or conditions to
establish results.

2. Notation and Preliminaries:

Let n be a positive integer and E = (—oo,)be the real line.

Denote by E™ the space of real n — tuples called the Euclidean space with norm |. |
if ] = [to, t1] is any interval of E, L, is the lebesgue space of square integrable
functions from ] to E™ written in full as L,([to, t1], E™).
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Let h > 0 be a positive real number and let C([—h, 0], E™)be the Banach space of
continuous function with the norm of uniform convergence, defined by

lpll = sup.¢(s); —h <s<0,for¢eC ([-h,0]E™),

If xis a function defined on [—h,0] to E™(i.e. x : [-h,0] » E™),then x; is a function
defined on the delay interval [—h, 0] given as

x:(s) = x(t + s);s € [-h,0], t € [0, ).

Consider the nonlinear infinite neutral system (1.1). That is
d [ee]
T [D(t,xe)] = L(t, xe)xe + f A®x(t +6)do + f(t,x.)
0
0
+ J- [de H(t,0)] u(t +0) (2.1)
-h
Where

® 0
L(t,x;) = Ak x(t —wk) + A(®)x(t + 6)do

0
L(t,x)x; = f do n (t,s,x(t+ s)x(t+0)
“h

nt,s, ¢, ) =0,fors=0and ¢, € C =C ([-h0],E™)
n(t, s, ¢, P)is a continuous matrix function of bounded variation in s € [—h, 0],
var n(t) < m(t),m(t) € L;,where L, is the space of integrable functions.
Let 0 be an open subset of E x C and D and L be bounded linear operators defined on
E x C into E™.
D(t,x;) = x(t)g(t, xp), where
o 0 0
gt x), = Z A (O (E—wp) + fA(t,S)¢(S)dS = f dgH(t,0) ¢(6)
n=0

-h —-h

0
Where 0 < w, < h and fde H(L0) 3| < h(®)lIoll
-h

D(t, x;) is non — atomic at zero (dif ferentiable and integrable at zero).

0

fA(t, s)/ds + ZIAn(t)I < 6(¢€), for all t,where 6(g) — 0.
—h n=1

f is continuous and satisfies other smoothness conditions.
Consider the system (2.1),

(o]

% [D(t,x¢)] = L(t, x)x + fo A(®)x(t + 6)do

0
+ f(t,xy) + f [de H(t,0)] u(t + 6) 21

—h
(circularity of the function from — o to zero,and from zero to ©).

LINEARIZATION OF SYSTEM (2.1)

We can linearize the system (2.1)as in Chukwu (1992)by setting x; = z,
a specified function inside the function without loss of generality.
Thus the system (2.1) becomes

% [D(t,x)] = L(t, z)x, + fo A(t,0)x(t + 6)do
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0
+ f(t,x) + f [de H(t,0)] u(t + 6) (2.2)
~h
Evidently,
had 0 o
LeDx = ) Aex(t-w) + f ACt, 0)x(t + 0)do +f ACt, 0)x(t + 0)do 2.3)
k=0 —o0 0
L't 2% = Z Ay x(t — wy) + f A(t, 0)x(t + 6)do 2.4)
Thkezf‘epresentations L,L* are the same under the following assumptions
P
l. . .. N
L(t, D)x; = pi"’oto ; Apx(t —wy) + M.lll\/mif o fM A(t, 0)x(¢ +0)d6 (2.5)

We assume the limits exist, giving finite partial sum for the infinite series and the
improper integrals. Thus the system

L'(t,2)x, = ZAk x(t = wy) + f A(t, 0)x(t + 6)d6 (2.6)
k=0 -
is finite and well defined function.

In the light of the above, system (2.1) reduces to

0
% [D(t,x)] = L(t, z)xe + f (t,x¢) + f_h[dg H(t,0)] u(t +06) 2.7)
x(to)=¢p€ C

Variation of Formula

Integrating system (2.7), after linearizing, we have
t

x(t) = X(t, to, P, wWxy + f X(t,s)+ f(s,x5) ds
0

t 0
+ f X(t,s){ f [de H(t,0)] u(t+9)}ds (2.8)
0 —h

Where X(t,s)is the fundamental matrix of the homogeneous part of the system (2.7).
X(t,s) = 1 (identity matrix) for t = s,of nxn order.
The 3rd term in the right hand side of system (2.8)contains the values of the control
u(t) for t <ty aswellas for t >ty (ty = 0).The values of the control u(t)
fort € [ty — h,tolenter into the definition of initial complete state {xo, uto}.
To separate them, the 3rd term of the system (2.8)must be transformed by changing the
order of integration.
Using the unsymmetric Bubini theorem, we have the following equalities;

¢ 0 ¢
x(t) = X(t, to, P, u)xy + f X(t, s)f (s, xs) ds + f dy, (f X(t,s)H(s, 0)u(S + B)ds)
0 -h 0

t 0 t+6
= X(¢, to, P, w)xg + f X(t,s)f(s,x5) ds + j hdHe <f X(t,s—0)H(s,—0,0)u(u—06 + 9)ds>
0 0

+6

t 0 t+6
= X(¢, to, P, w)xg + f X(t,s)f(s,x5) ds + j hdHa (f X(t,s —0)H(s,—0, 9)u(s)ds>
0 0

+6
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¢ 0 0
= X(t, to, o, u)xo + fo X(t,s)f(s,xs) ds + f_hdHe (jo X(t,s —0)H(s,—0, G)uo(s)ds>

+6

0 t+0
+f dy, (f X(t,s —60)H(s,—0, 0)u(s)ds> (2.9)
—-h 0

Where the symbol dy, denotes that the integration is in the Lebesque — stielties
sense with respect to the variable 0 in the function H(t, 6).
Let us introduce the following notations:

~ _(H(s,0)fors<t,6 €ER
H(s,6) = {0, fors>t, O€ R} (2.10)

Hence x(t) can be expressed in the following form:

0

t 0
x(t) = X(t, to, p, u)xg +f X(t,s)f(s,xs)ds + f dy, (f X(t,s—0)H(s,—6,06) uo(s)ds>
0 —-h 0

+6

+ fo dy, <ftX(t,s —0)H(s, -6, 9)u(s)ds> (2.11)
—h 0

Using again the unsymmetric Fubini theorem, the equality (2.11)can be rewritten in a
more convenient form as follows (see J. Klamka (1980)).

0

t 0
x(t) = X(t, to, d, u)xo + f X(t,s)f(s,xs) ds + f dy, (f X(t,s—0)H(s,—06,0) uo(s)ds>
0 —-h 0+60

t 0
+f f X(t,s —0)dy,H(s —6,60) |u(s)ds (2.12)
0 -h

Let us consider the solution x(t) of sytem (2.1) fort = t;.

t, 0 0
x(ty) = X(t, to, P, u)xo + f X(t, s)f(s,xs)ds + f dy, (f X(t,s—6)H(s,—0,0) uo(s)ds>
0 —h 0

+6

ty 0
+J;) (f_hX(t,S — g)ng H(s—0, 9)) u(s)ds

Definition 2.1: (Complete state)
The complete state for the system (2.1) is given by the set z(t) = {x; ,us}

Definition 2.2: (Relative controllability)

The system (2.1)is said to be relatively controllable on [ty, t,]if for every initial complete
state z(0) = {xo,uto} and x; € E™, there exists a control function u(t) defined on [ty, t;]
such that the solution of system (2.1) satisfies x(t;) = x;.
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Definition 2.3: (Reachable set)
The reachable set for the system (2.1) is given as

t/ (o
R(ty,to) ={f (f X(t,s—B)dHHﬁ(s—9,9)>u(s)d:ueU.}
t

-h
Where U = {u € L,([0,¢], E™: |w| <1, j=1,2,3,....m}

Definition 2.4: (Attainable set)
The attainable set for the system (2.1) is given as

A(ty, to) = {x(t, xoW:u €U, and |u| < 1, for every j},
where U = {u € L,([0,t], E™: |uj| <1, j=12, 3,.....m}

Definition 2.5: (Target set)
The target set for the system (2.1) denoted by G(ty,ty) is given as

G(ty,ty) ={x(t,xou): ty =T =ty for fixed Tand u € U}

Definition 2.6: (Controllability Grammian)
The controllability grammian for the system (2.1) is given as

t
W(ty, ty) = fZ(t,s)ZT(t,s)ds

to

¢ T
:f [fox(t,s—G)dyeﬁ(S—G,G)][J'Ox(t,s—e)dHeﬁ(s—B,B) ds
to L/-h _n

0
Where, Z(t,s) = [[ X(t,s —0)dy, H(s6,0) ] ,and T denotes the matrix transpose.
—h

Definition 2.7 (Properness)
The system (2.1) is proper in E™ on [ty t1],if span R(t{,ty) = E™, that isif

0
CT[f X(t,s—@)ngﬁ(s—B,B)]= 0 a.e t>0=ty, = C=0;Ce E™
-h

Definition 2.8 (Relative Controllability)
The system (2.1) is relatively controllable on [ty, t,] if

A(ty,tg) N G(ty, ty) #Pst>o0

2.1 Controllability Standard or Conditions
Application will be made of the following controllability conditions to establish results.

1. The non emptiness of the intersection of two set functions - attainable set and
target set is equivalent to the controllability. That is ;

A(ty,tg) N G(ty,ty) # ¢, = the system (2.1) is controllable.

2. The controllability grammian or map W (t4, t,) is invertible and the invertibility of
the grammian guarantees; the controllability of the system.The invertibility of the
grammian means that the rank of the grammian must be equal to n.

57



American Academic & Scholarly Research Journal aasfrj
ISSN 2162-3228 Vol 9, No 6, Sept 2017

It is also equivalent to W (ty, t,) is positive definite, which in turn is equivalent to

0
cT [f X(t,s—0)dy, H(s —6,0)[ = 0 a.e, on [to, t;] implies C = 0.
n

3. 0 €interior R(ty,ty), implies that the system (2.1) is controllable.

3.Main Results
In this section, we shall derive the form of the optimal control of the system (1.1) and

express same using the definition of the signum function.
Definition 3.1 (Signum Function)

The signum function is defined by

_{ 1,ifx>0}
SIMX=1_1ifx<0

Theorem 3.2 (Existence of an Optimal control)

Consider the system (1.1)

0
%(D(t,xt)] = L(tx)x, + f A(t,0)x(t +0)do + F(t,x,)

— 00

0
+f [dg H(t, 0)]u(t + 0) (1.1)
-h

with its basic assumptions.
Suppose that the system (1.1) is relatively controllable on the finite interval [ty, t,], then
there exists an optimal control (see Onwuatu (1993)).
Proof
By the relative controllability of the system (1.1), the intersection conditions holds.That is
Aty to) N Gty t0) # ¢
Hence, x(t,xq,u) € A(ty, ty) and x(t, x,u) € G(ty,ty).
Recall that the attainable set A(ty, ty)is translation of the reachable set R(t,, ty)through

the origin n, where

¢ 0 0
n = X(t, to, P, Wx, +J. X(t,s)f(s,xs) ds +f dy, (J. X(t,s—0)H(s,—6,0) uo(s)ds>
0 h 0

+6

It follows that y(t) € R(ty, to), fort € [ty tq1], t; > to,and can be defined as
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0

t —~
() = f_ duo < fo X(ts—0)AGs, —9,9)u(s)ds>

_ ft (fox@,s — 0)dy, A(s — 6, 9)) u(s)d
t

-h
Let, t* = infimum {t: z(t) € R (t1,t0)}
Now ty < t, < t; and there is a sequence of times t, and a corresponding sequence
of control {u,} € U with {t,} converging to t* (the minimum time).
Let z(tp) = y(ty,un) €R (ty,ty)-
Also,
lz(t") — y(t"u)l = 12(7) - z(tn) + z(tn) - ¥(",up)|
< 1z(t) -z + |yt un) =y (8, un)l

< 1zt - z(t)] + 1yt un) =y, wp)l
tn

< 12(t)-2(t)] + f Iy(s)lds

A
By the continuity of z(t) which follows the continuity of R(t,,t,) as a continuous set

function and the integrability of |ly(t)ll, it follows that y(t*,u,) - z(t*)

as n— o ,where ,z(t*) =y (t*,u*) € R(ty, to)

For same u* € U and by the definition of t*, u* is an optimal control.

This establishes the existence of an optimal control for the Nonlinear Infinitely

Space of Neutral Functional Differential Systems with Distributed Delays in the Control.

Theorem 3.2
Consider the Nonlinear InfinitelySpace of Neutral Differential Equation with Distributed Delays in the
Control
d 0
S0 = Lt 2w + f A6, 0)x(t + 6)d6 + f(t,x)
0 —0
+f [do H(t, 0)]u(t + 6) 3.1
-h
with its basic assumptions, then u* is the optimal control energy for the system (3.1) if and only if u* is
of the form:
t 0 N
w(t) = sgn [CTI [J. X (t,s—0)dy,H(s—06,0)|, CeE"
to —h
Proof

Suppose that,u*is the optimal control energy function for the system (3.1), then it
maximizes the rate of change y(t,u),which is given as:
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0

y(tu) = f X (ts — 0)du, AGs — 0, 0)u(t),
-h

foru € U,in the direction of C.

Since u(t)s are admissible controls, that is ,they are constrained to lie in a unit sphere,
we have

cT fox (t,s — 0)dy,H(s — 6,0)u(t) <
-h

0
CTf X(t,s— e)dHeﬁ(s -0, 9)‘
—-h

<cT fOX (t s — e)ngﬁ(s —6,0)sgn [CT fOX (t,s — e)ngﬁ(s -0, 9)] e (3.2)
—h —h

This inequality follows from the fact that, for any non zero number a,a < sgn a.

Hence defining
0
ut = sgn[CTf X (t,s—0)dy,H(s—6,0)] .....(33)
—h
The inequality (3.2), becomes

cT f "X (s — 0)dy, (s — 6,0)u(t) < CT f "X (ts— 0)dy, A(s — 0,0)u" (1)
h h

This shows that the control that maximizes y(t,u) € R(t;,ty) is of the form

o
v = sgn[ch X (t,s — 0)dyy, A(s — 6, 0)].
~h
Conversely,

ty 0
Let , U= ch U X (t,s —0)dy,H(s -6, 9)],
to L/-n

then for the controlu € U,

cT J: [fle (t,s — B)dygﬁ(s -0, 9)] u(s)ds

ti [ O 0
< ch U X (t,s—0)dy,H(s -9, e)] sgn [ch X (t,s — 0)dy,H(s — 0,0)|ds.
to, L/-n —-h

t [ 0
< CTf U X(t,s— B)dygﬁ(s -0, 9)] ds, since a # 0,sgna > 0.
t, L/-n

t, 0
= CTf [f X (t,s — 0)dy,H(s — 6,0)u’(s)]ds
to -h

t[ (0
This shows that u* maximizes J. U X(t,s— B)dHeﬁ(s —0,0)|](s)ds
o L/-n

over all admissible controls u € U.
Hence u” is an optimal control for the system (3.1). This completes the proof.
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