Some properties of fuzzy closed sets and fuzzy semiclosed sets in fuzzy topological spaces defined on a

aasrj

fuzzy set

^a Munir Abdul Khalil Alkafaji , ^b Hassan Abid Al Hadi Ahmed

^aDepartment of mathematics, College of Education, Al-Mustansiriyah University

^bDepartment of mathematics, College of Science, Baghdad University

Abstract. The aim of this work is to introduce certain types of fuzzy closed sets such as fuzzy regular closed set, fuzzy g – closed set, fuzzy g^* - closed, fuzzy rg – closed set and fuzzy sg – closed set. We studied the relation among them and some fundamental properties of these sets. Also we introduced and studied fuzzy regular open set, fuzzy g open set, fuzzy g^* - open set, fuzzy rg - open set, also we gave the relation between them and some fundamental properties of those sets. Also we introduce the concept of a f. s. g. c. s. and study some properties of this fuzzy set. We depended a fuzzy topology which is defined on a fuzzy set instead of a crisp set X when we defined these sets.

1-Introduction

The concept of fuzzy set was introduced by Zedeh . The fuzzy topological space was introduced by [C. L. CHANG]. In 1970 Levine N. was introduced generalized closed set. T. Norini work we introduced certain types of fuzzy closed sets such as, fuzzy regular closed set, fuzzy closed set, fuzzy g - closed set, fuzzy g^* - closed set, fuzzy rg - closed set and fuzzy sg – closed set, also we introduced fuzzy regular open set, fuzzy open set, fuzzy g - open set, fuzzy g^* - open, fuzzy rg - open set, and we studied the relation between them and gave some fundamental properties of these sets. Also we introduce the concept of a f. s. g. c. s. and study some properties of this fuzzy set. We depend on a fuzzy topology space which defined in a fuzzy set instead of a crisp set X when we defined these fuzzy closed sets.

2- Fuzzy topology on a fuzzy set.

2-1 Definition [Zedeh L.A]: Let X be universe set. A fuzzy set \tilde{A} in X is characterized

by a membership function $M\tilde{A}: X \to [0,1]$, we can write a fuzzy set \tilde{A} by

 $\tilde{A} = \{ (x, M\tilde{A}(x)) : x \in X, 0 \le M\tilde{A}(x) \le 1 \}.$

The collection of all fuzzy sets in *X* will denoted by $I^{x} = \{\tilde{A}, \tilde{A} \text{ is a fuzzy set in } X\}$.

<u>2.2 Definition [C.K. Wong]</u>: The support of a fuzzy set \tilde{A} is the crisp set of all $x \in X$

such that $M\tilde{A}(x) > 0$ and denoted by $S(\tilde{A})$

2.3 Definition [F. Conrad]: A fuzzy point P_x^r in X is a special fuzzy set with

membership function defined by: $P_x^r = \begin{cases} r & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$

Where $0 < r \le 1$, y is the support of P_x^r

<u>2.4 Definition [C.K. Wong]</u>: let \tilde{A}, \tilde{B} be two fuzzy sets in *X* with membership function $M\tilde{A}(x)$ and $M\tilde{B}(x)$ respectively, then for all $x \in X$:

- 1. $\tilde{A} \subseteq \tilde{B}$ if and only $M\tilde{A}(x) \leq M\tilde{B}(x)$
- 2. The complement of \tilde{A} is denoted by \tilde{A}^c and defined:

 $\tilde{A}^c = M\tilde{A}(x) = 1 - M\tilde{A}(x)$

- 3. $\tilde{A} = \tilde{B}$ if and only if $M\tilde{A}(x) = M\tilde{B}(x)$
- 4. $\tilde{A} \cap \tilde{B} = \min\{M\tilde{A}(x), M\tilde{B}(x)\}$
- 5. $\tilde{A} \cup \tilde{B} = \max\{M\tilde{A}(x), M\tilde{B}(x)\}$

<u>2.5 Definition</u>: A collection \tilde{T} of fuzzy sets of \tilde{A} such that

 $\tilde{T} \subseteq P(\tilde{A})$ is said to be a fuzzy topology on a fuzzy set \tilde{A} if it satisfied the following conditions:

- 1. $\tilde{A}, \tilde{\phi} \in \tilde{T}$
- 2. The intersection of finite members of fuzzy sets of \tilde{T} is an element of \tilde{T} .
- 3. The union of any members of \tilde{T} is an element of \tilde{T} .

 (\tilde{A}, \tilde{T}) is called a fuzzy topological space and denoted by a f.t.s.

2.6 Remark:

- 1. The members of \tilde{T} are called fuzzy open set, and denoted by f. o. s.
- If B̃ ∈ T̃, then the complement of B̃ is called a fuzzy closed set (f. c. s) and defined as MB̃(x) = MÃ(x) MB̃(x)

Where \tilde{A} as a universe fuzzy set on which \tilde{T} is defined.

3- Certain types of fuzzy closed sets.

<u>3.1 Definition</u>: Let (\tilde{A}, \tilde{T}) be a f. t. s and let \tilde{B} be a fuzzy set in (\tilde{A}, \tilde{T}) , then \tilde{B} is called a fuzzy regular closed set briefly (f. r. c. s.) if

$$M\tilde{B}(x) = M\overline{\tilde{B}^{\circ}}(x)$$

<u>3.2 Example</u>: Let $\tilde{A} = \{(a, 0.8), (b, 0.8), (c, 0.8)\}$ be a universe fuzzy set. Let $\tilde{B} =$

 $\{(a, 0.8), (b, 0.0), (c, 0.8)\}$ and let $\tilde{B} = \{(b, 0.8), (b, 0.8), (c, 0.8)\}$ are fuzzy sets on \tilde{A} , then $\tilde{T} = \{\tilde{\phi}, \tilde{A}, \tilde{B}, \tilde{C}\}$ is a fuzzy topology on (\tilde{A}, \tilde{T}) .

Now take $\tilde{B} = \{(a, 0.8), (b, 0.0), (c, 0.8)\}$ then $\tilde{D}^{\circ} = \{(a, 0.8), (b, 0.0), (c, 0.8)\}$, and

 $\overline{\tilde{D}}^{\circ} = \{(a, 0.8), (b, 0.0), (c, 0.8)\}.$

It is clear that $M\tilde{B}(x) = M\overline{\tilde{B}}^{\circ}$, therefore \tilde{B} is a f. r. c. s. in (\tilde{A}, \tilde{T}) .

<u>3.3 Proposition</u>: Every f. r. c. s. is a fuzzy closed set.

<u>Proof</u>: It is clear.

<u>3.4 Remark</u>: The converse of proposition need not be true as the following example:

3.5 Example: let $\tilde{A} = \{(a, 0.7), (b, 0.6), (c, 0.3)\}$ be a universe fuzzy set. Let $\tilde{B} =$

 $\{(a, 0.6), (b, 0.4), (b, 0.2)\}$ be a fuzzy set. Then $\tilde{T} = \{\tilde{\phi}, \tilde{A}, \tilde{B}\}$ be a fuzzy topology on \tilde{A} .

Now let $\widetilde{D} = \{(a, 0.1), (b, 0.2), (c, 0.1)\}$ then $\widetilde{D}^{\circ} = \widetilde{\phi}$ and $\overline{\widetilde{D}}^{\circ} = \widetilde{\phi}$, therefore $M\widetilde{D}(x) \neq 0$

 $M\overline{\widetilde{D}}^{\circ}$ and hence \widetilde{D} is not f. r. c. s.

<u>3.6 Definition</u>: Let (\tilde{A}, \tilde{T}) be a f. t. s. and let \tilde{B} be a fuzzy set in (\tilde{A}, \tilde{T}) , then \tilde{B} is called a fuzzy regular open set briefly (f. r. o. s.) if

 $M\tilde{B}(x) = M\bar{\tilde{B}}^{\circ}$

3.7 Proposition: Every f.r.o.s. is a fuzzy open set.

Proof: It is clear.

<u>3.8 Remark</u>: the converse of proposition (3.7) need not be true as the following:

<u>3.9 Example</u>: In the example (3.5), we see that $\tilde{B} = \{(a, 0.6), (b, 0.4), (c, 0.2)\}$ is a

fuzzy open set in (\tilde{A}, \tilde{T}) , and $M\bar{B}(x) = M\tilde{A}(x)$ also $M\bar{B}^{\circ} = M\tilde{A}(x)$

Therefore $M\tilde{B}(x) \neq M\bar{\tilde{B}}^{\circ}$, so \tilde{B} is not f.r.o.s.

<u>3.10 Proposition</u>: Let (\tilde{A}, \tilde{T}) be f.t.s. and let \tilde{B} be a fuzzy open set in (\tilde{A}, \tilde{B}) , then \tilde{B}° is a f.r.o.s. in (\tilde{A}, \tilde{T}) .

<u>Proof</u>: Let \tilde{B} be a fuzzy open set in (\tilde{A}, \tilde{T}) .

First we are going to show that

$$M\bar{\tilde{B}}^{\circ} \leq M\left(\left(\overline{\left(\bar{\tilde{B}}^{\circ}(x)\right)}\right)\right)$$

Now since $M\tilde{B}(x) \leq M\overline{\tilde{B}(x)}$, then $M\overline{\tilde{B}}^{\circ} \leq M\overline{\tilde{B}}^{\circ}(x)$ but \tilde{B} is a fuzzy open set in (\tilde{A}, \tilde{T}) .

(By hypothesis), then $M\tilde{B}^{c}(x) = M$, and then

(x)

$$M\tilde{B}(x) \le M\bar{\tilde{B}}^{\circ}(x).$$

Therefore $\overline{\tilde{B}}(x) \le M\left(\left(\overline{\tilde{B}}\right)^{\circ}\right)$. And thus

$$M\left(\overline{\tilde{B}(x)}\right)^{\circ} \leq M\left(\overline{\tilde{B}}^{\circ}(x)\right)$$

Second we are going to show that

$$M(\bar{B}^{\circ})^{\circ} \le M\bar{B}^{\circ}(x)$$

Since $M\bar{B}^{\circ}(x) \le M\bar{B}^{\circ}(x)$

Then $M\overline{\widetilde{B}(x)} \leq M\overline{\widetilde{B}(x)}$

But $M\overline{\tilde{B}}(x) = M\overline{\tilde{B}}(x)$ And so $M\overline{\overline{B}^{\circ}} \leq M\overline{\overline{B}}(x)$ Then $M\left(\overline{\tilde{B}^{\circ}(x)}\right)^{\circ} \leq M\bar{B}^{\circ}(x)$ Therefore $M\overline{\tilde{B}}^{\circ}(x) = M\overline{(\overline{\tilde{B}}^{\circ})}^{\circ}$ Thus $\overline{\tilde{B}}^{\circ}$ is a f. r. o. s. in (\tilde{A}, \tilde{T}) . **<u>3.11 Proposition</u>**: Let (\tilde{A}, \tilde{T}) be a f. t. s. and let \tilde{B} and \tilde{C} be a disjoint fuzzy open set in (\tilde{A}, \tilde{T}) then: $\min\{M\overline{\tilde{B}}^{\circ}(x), M\overline{C(x)}^{\circ}\} = 0 \forall x \in X$ **Proof**: Let \tilde{B} and \tilde{C} be a fuzzy open sets in (\tilde{A}, \tilde{T}) such that $\min\{M\overline{\tilde{B}}^{\circ}(x), M\overline{C(x)}^{\circ}\} = 0 \ \forall x \in X$ Then $M\tilde{B}(x) \leq M\tilde{C}^{c}(x) \forall x \in X$ and $M\tilde{C}^{c}(x) \leq M\tilde{B}^{c}(x) \forall x \in X$ And then $M\tilde{B}(x) \leq MM\tilde{C}^{c}(x)$ and $M\tilde{C}(x) \leq M\tilde{B}(x) \forall x \in X$ Since $M\overline{\tilde{B}(x)} \leq M\overline{\tilde{B}(x)}$ and $M\overline{\tilde{C}(x)}^{\circ} \leq M\overline{\tilde{C}(x)}$ Then $M\overline{\tilde{B}}^{\circ}(x) \leq M\overline{\tilde{B}}(x) \leq M\widetilde{C}^{c}(x)$ and $M\tilde{\tilde{C}}^{\circ}(x) \leq M\tilde{\tilde{C}}(x) \leq M\tilde{B}^{c}$ So min{ $M\tilde{B}^{\circ}(x), \tilde{C}(x)$ } = 0 and min{ $M\tilde{C}^{\circ}(x), M\tilde{B}(x)$ } = Therefore $\min\{\overline{B}^{\circ}(x), M\overline{C}^{\circ}\} = 0$ **<u>3.12 Definition</u>**: Let (\tilde{A}, \tilde{T}) be a f.t. s. and let \tilde{B} be a fuzzy set in (\tilde{A}, \tilde{T}) , then \tilde{B} is said to be a fuzzy generalized closed set briefly (f. g. c. s) if $M\overline{\tilde{B}(x)} \leq M\tilde{O}(x)$ whenever $M\tilde{B}(x) \leq M\tilde{O}(x)$

, where \tilde{O} is a fuzzy open set in (\tilde{A}, \tilde{T}) .

<u>3.13 Example</u>: Let $\tilde{A} = \{(a, 0.8), (b, 0.8), (c, 0.8)\}$ be a universe fuzzy set.

And let $\tilde{B} = \{(a, 0.8), (b, 0.0), (c, 0.0)\}, \ \tilde{C} = \{(a, 0.0), (b, 0.8), (c, 0.8)\}$ be a fuzzy sets of \tilde{A} .

Then $\tilde{T} = \{\tilde{\phi}, \tilde{A}, \tilde{B}, \tilde{C}\}$ be a f. t. s. defined on \tilde{A} .

Take $\tilde{D} = \{(a, 0.0), (b, 0.8), (c, 0.0)\}$ be a fuzzy set in (\tilde{A}, \tilde{T}) .

We notice that the fuzzy open sets which contain \widetilde{D} are \widetilde{C} and \widetilde{A} and which contain $\widetilde{\widetilde{D}}$ too, therefore \widetilde{D} is a f. g. c. s. in $(\widetilde{A}, \widetilde{T})$.

<u>3.14 Proposition</u>: Every fuzzy closed set is a f. g. c. s.

<u>Proof</u>: It is clear.

<u>3.15 Remark</u>: The converse of proposition (3.14) need not be true. In the example

(3.13) it is clear that \tilde{B} is a f.g.c.s. but is not fuzzy closed set.

3.16 Corollary: Every f. r. c. s. is a f. g. c. s.

<u>3.17 Definition</u>: Let (\tilde{A}, \tilde{T}) be a f. t. s. and let be a fuzzy set of (\tilde{A}, \tilde{T}) , then \tilde{B} is said to

be fuzzy generalized open set briefly (f. g. o. s) if \tilde{B}^c is a f. g. c. s.

<u>3.18 Proposition</u>: Every fuzzy open set is a f. g. o. s.

<u>3.19 Remark</u>: The converse of the proposition (3.18) need not be clear as the following example:

<u>3.20 Example</u>: In the example (3.13) take $\tilde{E} = \{(a, 0.8), (b, 0.0), (c, 0.8)\}$ since \tilde{B}° is a f. g. c. s. then \tilde{E} is a f. g. o. s. and it is clear that \tilde{E} is not fuzzy open set.

<u>3.21 Proposition</u>: Let (\tilde{A}, \tilde{T}) be a f. t. s. and let \tilde{B} be a fuzzy set in (\tilde{A}, \tilde{T}) ,

then $M\left(\tilde{B}^{\circ}(x)\right)^{c} = M\left(\overline{\tilde{B}^{c}(x)}\right)$

<u>3.22 Theorem</u>: Let (\tilde{A}, \tilde{T}) be a f.t.s. and let \tilde{B} be a fuzzy set in (\tilde{A}, \tilde{T}) , then \tilde{B} is a f. g. o. s. if only if

 $M\tilde{G}(x) \le M\tilde{B}^{\circ}(x)$ whenever $M\tilde{G}(x) \le M\tilde{B}$ where \tilde{G} is a fuzzy closed set in (\tilde{A}, \tilde{T}) .

Proof: depending on proposition (3.21)

<u>3.23 Definition</u>: Let (\tilde{A}, \tilde{T}) be a f.t. s. and let \tilde{B} be a fuzzy set in (\tilde{A}, \tilde{T}) then \tilde{B} is said to be a fuzzy g^* - closed set briefly (f. g^* . c. s.) if $M\overline{\tilde{B}}(x) \leq M\tilde{u}(x)$ whenever $M\tilde{B}(x) \leq M\tilde{u}(x)$ where \tilde{u} is a f. g. o. s. in (\tilde{A}, \tilde{T}) . And a fuzzy set \tilde{C} of (\tilde{A}, \tilde{T}) is said to be a fuzzy g^* - open set briefly f. g^* . o. s if \tilde{C}^c is f. g^* . c. s.

3.24 Example: Let $\tilde{A} = \{(a, 0.9), (b, 0.8), (c, 0.7)\}$ be a universe fuzzy set. And let $\tilde{B} = \{(a, 0.7), (b, 0.4), (c, 0.6)\}$ be a fuzzy set of \tilde{A} then $\tilde{T} = \{\tilde{\phi}, \tilde{A}, \tilde{A}\}$ be a f.t.s. on \tilde{A} . Take $\tilde{D} = \{(a, 0.8), (b, 0.4), (c, 0.6)\}$

Then $M\overline{\widetilde{D}}(x) = M\widetilde{A}(x)$ and $\widetilde{A}(x)$ is the only f. g. o. s. which contains \widetilde{D} and $\widetilde{A}(x)$ contains $\overline{\widetilde{D}}$ too, therefore \widetilde{D} is a f. g^* . c. s. in (\widetilde{A}, T) .

<u>3.25 Proposition</u>: Every a f. g^* . c. s. is a f. g. c. s.

<u>3.26 Remark</u>: The converse of proposition (3.25) need not be true as the following example:

3.27 Example: In the example (3.13) it is clear that

 $\widetilde{D} = \{(a, 0.0), (b, 0.8), (c, 0.0)\}$ is a f. g. c. we are going to explain that \widetilde{D} is not f. g^* . c. s. we notice that \widetilde{D} is a f. g. o. s. in $(\widetilde{A}, \widetilde{T})$, then $M\overline{\widetilde{D}}(x) \le M\overline{\widetilde{D}}(x)$ but $M\overline{\widetilde{D}}(x) = M\widetilde{A}(x) \preccurlyeq M\widetilde{D}(x)$. Therefore \widetilde{D} is not f. g^* . c. s.

<u>3.28 Proposition</u>: Every fuzzy closed set is a f. g^* . c. s.

<u>3.29 Remark</u>: The converse of proposition (3.28) need not be true as the following example:

<u>3.30 Example</u>: In example (3.24) it is clear that \widetilde{D} is a f. g^* . c. s. but not fuzzy closed set.

<u>3.31 Proposition</u>: Let (\tilde{A}, \tilde{T}) be a f. t. s. and let \tilde{B} be a f. g. o. s. and f. g^* . c. s. in (\tilde{A}, \tilde{T})

then \tilde{B} is a fuzzy closed set.

<u>Proof</u>: Let \tilde{B} be a f. g. o. s. and f. g^* . c. s. in (\tilde{A}, \tilde{T}) .

We are going to show that \tilde{B} is a fuzzy closed set in (\tilde{A}, \tilde{T}) .

Now $M\tilde{B}(x) \le M\tilde{B}(x)$ and $M\bar{\tilde{B}}(x) \le M\tilde{B}(x)$

But $M\tilde{B}(x) \le M\tilde{\tilde{B}}(x)$, so $M\tilde{\tilde{B}}(x) = M\tilde{B}(x)$

Therefore \tilde{B} is a fuzzy closed set in (\tilde{A}, \tilde{T}) .

<u>3.32 Definition</u>: Let (\tilde{A}, \tilde{T}) be a f.t.s. and let \tilde{B} be a fuzzy set in (\tilde{A}, \tilde{T}) then \tilde{B} is said

to be a fuzzy regular generalized closed set briefly f.r. g.c.s. if $M\overline{\tilde{B}}(x) \leq M\tilde{u}(x)$

whenever $M\tilde{B}(x) \leq M\tilde{u}(x)$ where \tilde{u} is f. r. o. s. in (\tilde{A}, \tilde{T}) .

<u>3.33 Proposition</u>: Every f. *g*. c. s. is a f. r. *g*. c. s.

<u>Proof</u>: Let (\tilde{A}, \tilde{T}) be a f. t. s. and let \tilde{B} be a f. g. c. s. in (\tilde{A}, \tilde{T}) , let

 $M\tilde{B}(x) \le M\tilde{u}(x)$ where \tilde{u} be f. r. o. s. in (\tilde{A}, \tilde{T})

Then \tilde{u} is a fuzzy open set (Proposition 3.7) now since \tilde{B} is a f. g. c. s. and \tilde{U} is a fuzzy open set, then $M\tilde{B}(x) \leq M\tilde{u}(x)$

Therefore \tilde{B} is a f.r. g.c.s.

<u>3.34 Remark</u>: The converse of proposition (3.33) need not to be true as the following example:

3.35 Example: Let $\tilde{A} = \{(a, 0.9), (b, 0.8), (c, 0.7)\}$ as a universe fuzzy set.

Let $\tilde{B} = \{(a, 0.8), (b, 0.0), (c, 0.0)\}, \tilde{C} = \{(a, 0.0), (b, 0.7), (c, 0.0)\}$

 $\tilde{D} = \{(a, 0.8), (b, 0.7), (c, 0.0)\}$ be a fuzzy set of \tilde{A} . Then

 $\tilde{T} = \{\tilde{\phi}, \tilde{A}, \tilde{B}, \tilde{C}, \tilde{D}\}$ be a f. t. s. on \tilde{A} .

Take $\widetilde{D} = \{(a, 0.8), (b, 0.7), (c, 0.0)\}$, we are going to explain that \widetilde{D} is a f. r. g. c. s. but is not f. g. c. s.

We notice that \tilde{A} is the only f.r.o.s. which contains \tilde{D} and \tilde{A} contains \tilde{D} too, therefore \tilde{D} is a f.r.g.c.s. Now since $M\tilde{D}(x) \leq M\tilde{D}(x)$ but $\overline{\tilde{D}}(x) = M\tilde{A}(x) \leq M\tilde{D}(x)$, therefore \tilde{D} is not f.g.c.s.

3.36 Corollaries:

- 1. Every fuzzy closed set is a f.r.g.c.s.
- 2. Every f.r.c.s. is a f.r.g.c.s.

<u>3.37 Definition</u>: Let (\tilde{A}, \tilde{T}) be a f.t.s. and let \tilde{B} be a fuzzy set in (\tilde{A}, \tilde{T}) , then \tilde{B} is said

to be a fuzzy regular generalized open set briefly (f. r. g. o. s.) if \tilde{B} is a f. r. g. c. s.

<u>3.38 Proposition</u>: Every f. g. o. s. is a f. r. g. o. s.

<u>3.39 Remark</u>: The converse of proposition (3.38) need not to be true as the following example:

<u>3.40 Example</u>: In the example (3.35) take $\tilde{B} = \{(a, 0.1), (b, 0.1), (c, 0.7)\}$, it is clear that \tilde{B} is a f. r. g. o. s. but not f. g. o. s.

<u>3.41 Corollary</u>: Every fuzzy open set is a f. r. g. o. s.

<u>3.42 Remark</u>: The converse of the corollary (3.41) needs not to be true as the following example:

<u>3.43 Example</u>: Let $\tilde{A} = \{(a, 0.9), (b, 0.8), (c, 0.7)\}$ be a universe fuzzy set. Let

 $\tilde{B} = \{(a, 0.6), (b, 0.2), (c, 0.)\}, \text{ then } \tilde{T} = \{\tilde{\phi}, \tilde{A}, \tilde{B}\} \text{ be a f. t. s. on } \tilde{A}.$

Take $\tilde{C} = \{(a, 0.5), (b, 0.1), (c, 0.2)\}$ be a fuzzy set in (\tilde{A}, \tilde{T}) , it is clear that \tilde{C} in not a

fuzzy open set, we are going to show that \tilde{C} is a f. r. g. o. s., in other meaning we are going to show that \tilde{C}^c is a f. r. g. c. s.

Now $\tilde{C}^c = \{(a, 0.4), (b, 0.7), (c, 0.5)\}$ and $M\overline{\tilde{C}^c} = M\tilde{A}(x)$, also all f. r. o. which contains \tilde{C}^c is \tilde{A} , which contains $\overline{\tilde{C}^c}$ too, therefore \tilde{C}^c is a f. r. g. c. s. and that means \tilde{C} is a f. r. g. o. s. in (\tilde{A}, \tilde{T}) .

Through above relations among fuzzy closed sets we introduce the following diagram:

<u>3.44 Definition</u>: Let (\tilde{A}, \tilde{T}) be a f. t. s then (\tilde{A}, \tilde{T}) is said to be a fuzzy

 $T_{\frac{1}{2}}$ - space briefly $(f, T_{\frac{1}{2}} - \text{space})$ if every f. g. c. in (\tilde{A}, \tilde{T}) is a fuzzy closed set.

<u>3.45 Definition</u>: Let (\tilde{A}, \tilde{T}) be a f.t.s. then (\tilde{A}, \tilde{T}) is said to be a fuzzy $R - T_{\frac{1}{2}}$ space

briefly

$$(f. R - T_{\underline{1}}. s.)$$
 if every f. r. g. c. s. in (\tilde{A}, \tilde{T}) is a f. r. c. s.

<u>3.36 Theorem</u>: Every $\left(f. R - T_{\frac{1}{2}}. s.\right)$ is a f. $T_{\frac{1}{2}}. s.$

<u>3.47 Definition</u>: Let (\tilde{A}, \tilde{T}) be a f.t.s then (\tilde{A}, \tilde{T}) is said to be a fuzzy R – space briefly (f. R. s.) if every fuzzy closed set in (\tilde{A}, \tilde{T}) is a f. r. c. s.

<u>3.48 Example</u>: Let (\tilde{A}, \tilde{T}) be a fuzzy discrete topology, then (\tilde{A}, \tilde{T}) is a f. R. s.

<u>**3.49 Theorem**</u>: Every f. R. $T_{\frac{1}{2}}$ s. is a f. R. s.

<u>3.50 Remark</u>: The converse of theorem (3.49) need not be true as the following example:

<u>3.51 Example</u>: Let $\tilde{A} = \{(a, 0.9), (b, 0.9), (c, 0.9)\}$ be a universe fuzzy set.

Let $\tilde{B} = \{(a, 0.9), (b, 0.0), (c, 0.9)\}, \tilde{C} = \{(a, 0.0), (b, 0.9), (c, 0.0)\}$ be a fuzzy of \tilde{A} , then $\tilde{T} = \{\tilde{\phi}, \tilde{A}, \tilde{B}, \tilde{C}\}$ be a f. t. s. on \tilde{A} .

We are going to show that (\tilde{A}, \tilde{T}) is a f. R. s. but is not a f. R – T₁. s.

The fuzzy closed set in (\tilde{A}, \tilde{T}) are $\tilde{\phi}, \tilde{A}, \tilde{B}, \tilde{C}$ and which are f. r. c. s. in (\tilde{A}, \tilde{T})

Now take $\widetilde{D} = \{(a, 0.0), (b, 0.0), (c, 0.9)\}$ clearly \widetilde{D} is a f. r. g. c. s. but is not a f. r. c. s. in $(\widetilde{A}, \widetilde{T})$, therefore $(\widetilde{A}, \widetilde{T})$ is a f. R. s but is not a f. R – T₁. s.

4 - Fuzzy semi - generalized closed set

4.1 Definition [M. M. Stadler; M. A. de Parda Vincente,]: Let (\tilde{A}, \tilde{T}) be a f. t. s. and let \tilde{B} be a fuzzy set in (\tilde{A}, \tilde{T}) , then \tilde{B} is said to be a fuzzy semi – open set briefly (f. s. o. s.) if there exist a fuzzy open set \tilde{O} in (\tilde{A}, \tilde{T}) such that $M\tilde{O}(x) \le M\tilde{B}(x) \le M\bar{\tilde{O}}(x)$ **4.2 Example**: Let $\tilde{A} = \{(a, 0.6), (b, 0.7)\}$ be a universe fuzzy set, and let $\tilde{B} =$

 $\{(a, 0.4), (b, 0.0)\}$ be a fuzzy set of \tilde{A} . Then $\tilde{T} = \{\tilde{\phi}, \tilde{A}, \tilde{B}\}$ be a f.t.s. on \tilde{A} .

Take $\tilde{C} = \{(a, 0.5), (b, 0.0)\}$, so \tilde{C} is a f. s. o. s.

<u>4.3 Proposition</u>: Let (\tilde{A}, \tilde{T}) be a f. t. s. and let \tilde{B} be a fuzzy set in (\tilde{A}, \tilde{T}) , then \tilde{B} is a

f. s. o. s. if and only if $M\tilde{B}(x) \leq M\bar{\tilde{B}}^{\circ}(x)$.

<u>4.4 Definition</u>: Let (\tilde{A}, \tilde{T}) be a f. t. s., let \tilde{B} be a fuzzy set in (\tilde{A}, \tilde{T}) , then \tilde{B} is said to be a fuzzy semi – closed set briefly a f. s. c. s. if there exist a fuzzy closed set \tilde{F} in (\tilde{A}, \tilde{T}) such that $M\tilde{F}^{\circ}(x) \leq M\tilde{B}(x) \leq M\tilde{F}(x)$

<u>4.5 Proposition</u>: Let (\tilde{A}, \tilde{T}) be a f. t. s. let \tilde{B} be a fuzzy set in (\tilde{A}, \tilde{T}) , then:

- (1) \tilde{B} is f. s. c. s. if and only if $M\bar{B}^{\circ}(x) \leq M\tilde{B}(x)$.
- (2) \tilde{B} is a f. s. c. s. if and only if \tilde{B}° is a f. s. o. s..

<u>4.6 Definition</u>: Let (\tilde{A}, \tilde{T}) be a f.t.s. and let \tilde{B} be a fuzzy set in (\tilde{A}, \tilde{T}) , then a fuzzy semi – interior briefly $(f, \overline{\tilde{B}}^{s})$, $(f, \tilde{B}^{\circ s})$ respectively, and defined as:

- (1) f. $\overline{\tilde{B}}^{s} = \inf\{\tilde{G}: \tilde{G} \text{ is a f. s. c. s. in } (\tilde{A}, \tilde{T}), M\tilde{B}(x) \le M\tilde{C}(x)\}$
- (2) f. $\tilde{B}^{\circ s} = \sup\{\tilde{H}: \tilde{H} \text{ is a f. s. o. s. in } (\tilde{A}, \tilde{T}), M\tilde{H}(x) \le M\tilde{B}(x)\}$

<u>4.7 Definition</u>: Let (\tilde{A}, \tilde{T}) be a f. t. s. let \tilde{B} a fuzzy set in (\tilde{A}, \tilde{T}) , then \tilde{B} is said to be a fuzzy semi – generalized closed set briefly (f. sg. c. s.) if $Mf \cdot \overline{\tilde{B}}^{s} \leq M\tilde{G}(x)$ wherever $M\tilde{B}(x) \leq M\tilde{G}(x)$, where \tilde{G} is a f. s. o. s. in (\tilde{A}, \tilde{T}) .

Now we are going to show that a f. g. c. s. and a f. sg. c. s. are independent concept, namely there is a f. g. c. s. which is not a f. s. c. s. and there is a f. s. c. s. which is not a f. g. c. s. as the following example:

4.8 Examples:

(1) Let $\tilde{A} = \{(a, 0.6), (b, 0.7)\}$ be a universe fuzzy set.

Let $\tilde{B} = \{(a, 0.2), (b, 0.0)\}, \tilde{C} = \{(a, 0.4), (b, 0.3)\}$ be a fuzzy sets g \tilde{A} .

Then $\tilde{T} = \{\tilde{\phi}, \tilde{A}, \tilde{B}, \tilde{C}\}$ be a f.t.s. on \tilde{A} .

Now take $\tilde{D} = \{(a, 0.3), (b, 0.0)\}$, we are going to explain that \tilde{D} is a f. s. c. s. which is not f. g. c. s.

Now $\overline{\tilde{D}} = \{(a, 0.4), (b, 0.7)\}$ and $\overline{\tilde{D}}^{\circ} = \tilde{\phi}$ so $M\overline{\tilde{D}}^{\circ}(x) = 0 \le M\widetilde{D}(x)$, therefore \widetilde{D} is a f. s. c. s., but is not a f. g. c. s., to explain that:

 $M\widetilde{D}(x) \le M\widetilde{C}(x)$ but $M\overline{\widetilde{D}}(x) \le M\widetilde{C}(x)$

(2) Let $\tilde{A} = \{(a, 0.9), (b, 0.9)\}$ be a universe fuzzy set. Let $\tilde{B} = \{(a, 0.6), (b, 0.0)\}$ be a fuzzy set of \tilde{A} , then $\tilde{T} = \{\tilde{\phi}, \tilde{A}, \tilde{B}\}$ be a f.t.s. on \tilde{A} .

Take $\tilde{C} = \{(a, 0.6), (b, 0.0)\}$ we are going to explain that \tilde{C} is a f. g. c. s. but is not f. s. c. s.

Now $M\tilde{C}(x) \leq M\tilde{A}(x)$ and also $M\tilde{C}(x) \leq M\tilde{A}(x)$, therefore \tilde{C} is a f. g. c. s.

Now since $M\tilde{C}(x) = M\tilde{A}(x)$ and $M\tilde{C}^{\circ} = M\tilde{A}(x)$

But $M\overline{\tilde{C}}^{\circ} \preccurlyeq M\widetilde{C}(x)$ so \widetilde{C} is not a f. s. c. s.

<u>4.9 Remark</u>: Examples (4.8) lead us to conclude that a f. g. c. s. and a f. sg. c. s. are

independent.

References

Mashhour A.s and Ghanim M.H ((Fuzzy closure spaces)) J. math. And App 1.106. pp: 145-170 (1985).

Zedeh L.A. ((Fuzzy sets)), inform control 8, 338-353 (1965).

T. Noir ((Almost – contained and some separation axioms)), Glasnik math. Tm, 9 (24) No. 1-1974, 131-135.

Levine. N. ((Generalized closed sets in topology)) Rend. Circ. Math. Paleremo (2) 19 (1970), 89-96.

C.K. Wong ((covering properties of fuzzy topological spaces)), Journal lib of mathematical analysis and application, No. 43, Pages 697-704.

F. Conrad ((Fuzzy topological concepts)), Journal of mathematical analysis and applications, No, 74, Pages 4323- 440 (1980).

F. G. Sh, ((A new notion of fuzzy compactness in L – Topological spaces)) Information science, No. 173, pages 354 (2005).

M. H. Ghanim; E. E. Kevre, A.S. Mashhour ((Separation Axioms, subspace and sums in fuzzy topology)) Journal of mathematical analysis and applications, No. 102, pages 189-202 (1984).

M. M. Stadler; M. A. de Parda Vincente, ((Strong separation and strong count ability in fuzzy topological space))m fuzzy sets and systems, No. pages 95-116 (1991).

R. Lowen, ((A comparison of different compactness notions in fuzzy topological spaces)), Journal of mathematical analysis and applications, No. 64, pages 446- 454 (1978).

C. L. CHANG, ((Fuzzy topological spaces)) 54, 182-190 (1968).