A study about β -fuzzy topological group

Dr.Munir Abdul Kalik Al.khafaji

Al-Mustansiriyah University College of Education Department of Math.

E-mail:mnraziz@yahoo.com

Abstract

In this paper we considered fuzzy topological group and β -fuzzy topological group, and we proved some results about the connection between these two concepts.

Keywords: fuzzy topological group, Quotient fuzzy topological group, eta -fuzzy topological group

1. Introduction

In his classical paper [L. A. ZADEH] in 1965 Zadeh introduced the notation of fuzzy sets and fuzzy set operation. Subsequently, Chang [C. L.CHANG], applied some basic concepts from general topology to fuzzy sets, he also developed a theory of fuzzy topological spaces. In this paper we study some properties of fuzzy topological groups, and by depending on concepts introduced in [I. M. Hanafy] and [N.R.Das^{*a*,*}, prabin das^{*b*}] we define the new concept named by β -fuzzy topological group, also we proved some properties on it.

2. Preliminary

2.1 Definition [D. H. Foster]

Let *X* be a set and I the unit interval [0.1].a fuzzy set \tilde{A} in *X* is characterized by a membership function $M_{\tilde{A}}$ which is associate with each point $x \in X$ its "grade of membership" $M_{\tilde{A}} \in I$

2.2 Definition 2.2. [TUNA HATICE YALVAC]

Let f be a mapping from X to a set Y. Let \widetilde{B} be a fuzzy set in Y, with membership function $M_{\widetilde{B}}$. Then the inverse image of \widetilde{B} written $f^{-1}(\widetilde{B})$ is the fuzzy set in X with membership function defined by

$$M_{f^{-1}(\tilde{B})}(x) = M_{\tilde{B}}(f(x)) \quad \text{for all } x \in X$$

Conversely, let \widetilde{A} be a fuzzy set in X with membership function $M_{\widetilde{A}}$ then the image of \widetilde{A} written $f(\widetilde{A})$, is the fuzzy set in Y with membership function defined by

$$M_{f(\tilde{A})}(y) = \begin{cases} \sup \{M_{\tilde{A}}(x) : x \in X, f(x) = y\} & \text{if } f^{-1}(y) \neq \phi \\ 0 & \text{otherwise} \end{cases}$$

for all $y \in Y$ where $f^{-1}(y) = \{x / f(x) = y\}$

2.3 Theorem [TUNA HATICE YALVAC]

Let f be a function from X to Y and I be any index set. Then the following Statements are true.

1-if
$$\widetilde{A} \subseteq X$$
 then $f(\widetilde{A})^{c} \subseteq f(\widetilde{A}^{c})$
2-if $\widetilde{B} \subseteq Y$ then $f^{-1}(\widetilde{B}^{c}) = f^{-1}(\widetilde{B})^{c}$
3-if $\widetilde{A}_{1}, \widetilde{A}_{2} \subseteq X$ and $\widetilde{A}_{1} \subseteq \widetilde{A}_{2}$ then $f(\widetilde{A}_{1}) \subseteq f(\widetilde{A}_{2})$
4-if $\widetilde{B}_{1}, \widetilde{B}_{2} \subseteq Y$ and $\widetilde{B}_{1} \subseteq \widetilde{B}_{2}$ then $f^{-1}(\widetilde{B}_{1}) \subseteq f^{-1}(\widetilde{B}_{2})$
5-if $\widetilde{A} \subseteq X$ then $\widetilde{A} \subseteq f^{-1}(f(\widetilde{A}))$
6- if $\widetilde{B} \subseteq X$ then $f(f^{-1}(\widetilde{B})) \subseteq \widetilde{B}$
7-if $\widetilde{A}_{i} \subseteq X$ for every $i \in I$ then $f(\bigcup_{i \in I} \widetilde{A}_{i}) = \bigcup_{i \in I} f(\widetilde{A}_{i})$
8-if $\widetilde{B}_{i} \subseteq Y$ for every $i \in I$ then $f^{-1}(\bigcup_{i \in I} \widetilde{B}_{i}) = \bigcup_{i \in I} f^{-1}(\widetilde{B}_{i})$
9- if $\widetilde{B}_{i} \subseteq Y$ for every $i \in I$ then $f^{-1}(\bigcap_{i \in I} \widetilde{B}_{i}) = \bigcap_{i \in I} f^{-1}(\widetilde{B}_{i})$
10- if $\widetilde{A}_{1}, \widetilde{A}_{2} \subseteq X$ then $f(\widetilde{A}_{1} \cap \widetilde{A}_{2}) \subseteq f(\widetilde{A}_{2}) \cap f(\widetilde{A}_{1})$
11- if f is one to one and $\widetilde{A} \subseteq X$ then $\widetilde{A} = f^{-1}(f(\widetilde{A}))$
12-if f is onto and $\widetilde{B} \subseteq X$ then $f(f^{-1}(\widetilde{B})) = \widetilde{B}$

13-Let g be a function from Y to Z if $\widetilde{B} \subseteq Z$ then $(gof)^{-1}(\widetilde{B}) = f^{-1}(g^{-1}(\widetilde{B}))$ and if $\widetilde{A} \subseteq X$ then $(gof)(\widetilde{A}) = g(f(\widetilde{A}))$ 14- if f is bisection then for $\widetilde{A} \subseteq X$ then $f(\widetilde{A})^{c} = f(\widetilde{A}^{c})$

2.4 Definition.[R. Lowen]

A fuzzy topology is a family \widetilde{T} of fuzzy sets in X which satisfies the following conditions 1- $k_c \in \widetilde{T}$ $c \in [0,1]$ 2- if $\widetilde{A}, \widetilde{B} \in \widetilde{T}$ then $\widetilde{A} \cap \widetilde{B} \in \widetilde{T}$ 3-if $\widetilde{A}_i \in \widetilde{T}$ $\forall i \in I$ then $\bigcup_{i \in I} \widetilde{A}_i \in \widetilde{T}$ the pair (X, \widetilde{T}) is a fuzzy topological space (FTS). Every member of \widetilde{T} is called a \widetilde{T} -open fuzzy

set in (X,\widetilde{T}) (or simply open fuzzy set) and complement of a open fuzzy set is called closed fuzzy set

2.5 Definition [N.R.Das^{*a*,*}, prabin das^{*b*},]

A fuzzy topology \tilde{T} on a group G is said to be compatible if the mapping

$$g: (G \times G, \tilde{T} \times \tilde{T}) \to (G, \tilde{T}), g(x, y) = xy$$

and

$$h: (G, \tilde{T}) \rightarrow (G, \tilde{T}), h(x) = x^{-1}$$

are fuzzy continuous

2.6 Definition. [N.R.Das^{*a*,*}, prabin das^{*b*},]

A group G equipped with a compatible fuzzy topology \tilde{T} on G is called a fuzzy topological group (FTG)

2.7 Quotient group

Let *G* be a group and *H* be a normal subgroup of *G* for each $x \in G$, Let xH denote the unique coset to which *x* belongs in the decomposition of *G* into pair wise disjoint cosets. Let $\varphi: G \to G/H$ define by $\varphi(x) = xH$

It is easy to check φ is homomorphism of G into G/H.

To show this let $x, y \in G$, $\varphi(xy) = xyH = xHyH = \varphi(x)\varphi(y)$ Hence φ is homomorphism.

2.8 Quotient fuzzy topology on G/\tilde{H} as follows:

A fuzzy set \widetilde{W} in G/\widetilde{H} is open fuzzy if and only if $\varphi^{-1}(\widetilde{W})$ is open fuzzy in G.Note that $\mathring{A} = \{a\widetilde{H}; a \in \widetilde{A}\}$ is open fuzzy if and only if $\cup \{a\widetilde{H}; a \in \widetilde{A}\}$ is an open fuzzy in G

2.9 Theorem [N.R.Das^{*a*,*}, prabin das^{*b*},]

Let (G, \tilde{T}) be an FTG and $a, b \in G$ then

1-The translation maps

$$r_a: (G, \tilde{T}) \to (G, \tilde{T}), r_a(x) = xa$$

and

$$l_a: (G, \tilde{T}) \to (G, \tilde{T}), l_a(x) = ax$$

2-The inversion map

$$f: (G, \tilde{T}) \rightarrow (G, \tilde{T}), f(x) = x^{-1}$$

and the map

$$\varphi: (G, \tilde{T}) \to (G, \tilde{T}), \varphi(x) = axb$$

are all fuzzy homeomorphisms.

3. Fuzzy topological group

3.1.Theorem

Let G be a group having fuzzy topology \tilde{T} then (G, \tilde{T}) is FTG if and only if the map $g: (G \times G, \tilde{T} \times \tilde{T}) \to (G, \tilde{T})$ define by $g(x, y) = xy^{-1}$ is fuzzy continuous

3.2.Theorem

Let (G, \tilde{T}) be FTG, $\tilde{A}, \tilde{B} \subseteq G$, $g \in G$ then

1- \tilde{A} open fuzzy implies $\tilde{A}g$, $g\tilde{A}$, $g\tilde{A}g^{-1}$ and \tilde{A}^{-1} are open fuzzy

2- \tilde{A} closed fuzzy implies $\tilde{A}g$, $g\tilde{A}$, $g\tilde{A}g^{-1}$ and \tilde{A}^{-1} are closed fuzzy

3- \tilde{A} open fuzzy implies $\tilde{A}\tilde{B}and\tilde{B}\tilde{A}$ open fuzzy

4- \tilde{A} closed fuzzy and \tilde{B} finite implies $\tilde{A}\tilde{B}and\tilde{B}\tilde{A}$ closed fuzzy.

Proof:

1 and 2 r_a , $l_a f, \varphi$ being fuzzy homeomorphism. Are all open fuzzy and closed fuzzy 3- $\tilde{A}\tilde{B} = \bigcup \{\tilde{A}b; b \in \tilde{B}\}\$ is the union of open fuzzy sets and hence open fuzzy similarly for $\tilde{B}\tilde{A}$ 4-Similarly as above.

3.3.Definition

A FTG G is called fuzzy homogenous if for any $a, b \in G$ there is a fuzzy homeomorphism $f: G \to G \text{ s.t } f(a) = b.$

3.4 Theorem

A FTG is a fuzzy homogenous space.

Proof:

Let *G* be a FTG and $x_1, x_2 \in G$ take $a = x_1^{-1}x_2$ $f(x) = r_a(x) = xa = xx_1^{-1}x_2$ implies $f(x_1) = x_2$ by theorem 2.9 *f* is fuzzy homeomorphism

3.5 Theorem

A non trivial FTG has no fixed point properties

Proof:

Let *G* be a FTG, $a \in G$ with $a \neq e$ now the map $r_a: G \to G$ is fuzzy continuous suppose $r_a(x) = x$ for some $x \in G$ xa = x Implies a = e which is contradiction to the concepts that r_a has no fixed point, hence *G* has no fixed point properties

3.6 Theorem

Every open fuzzy subgroup of FTG is closed fuzzy

Proof:

Let G be a FTG and \tilde{H} be open fuzzy subgroup of G

 $G - \tilde{H} = \bigcup \{g\tilde{H}; g \notin \tilde{H}\} = \{r_g(x); g \notin \tilde{H}\}$ which is open fuzzy by theorem 3.2 There fore \tilde{H} is closed

fuzzy 🔳

3.7 Theorem

Let G be FTG and \tilde{H} be a fuzzy subgroup of G.let G/\tilde{H} be quotient space, endowed with the quotient topology and φ the canonical mapping of G into G/\tilde{H}

Then

- 1- φ is onto
- 2- φ is fuzzy continuous
- 3- φ is fuzzy open

Proof:

- 1- Let $p \in G/\tilde{H}$ implies $p = x\tilde{H} = \varphi(x)$ we get φ is onto
- 2- It is clear from definition
- 3- Let \tilde{A} be any open fuzzy in G we have show that $\varphi(\tilde{A})$ is open fuzzy in G/\tilde{H} i.e. $\varphi^{-1}(\varphi(\tilde{A}))$ is open fuzzy in G.

$$\varphi^{-1}(\varphi(\tilde{A})) = \{x; x \in a\tilde{H} \text{ for some } a \in \tilde{A}\} = \tilde{A}\tilde{H}$$

By theorem 3.2 $\tilde{H}\tilde{A}$ is open fuzzy, therefore f is fuzzy open mapping

3.8.Theorem

Let G be FTG and \tilde{H} be fuzzy subgroup of G then G/\tilde{H} is fuzzy discrete topological space if and only if \tilde{H} is open fuzzy

Proof:

Let G/\tilde{H} be a fuzzy discrete topological space then each subset of G/\tilde{H} is open fuzzy and hence each singleton is open fuzzy in particular \tilde{H} is fuzzy point of G/\tilde{H} , there for \tilde{H} is open fuzzy Conversely, let \tilde{H} be open fuzzy so is $x\tilde{H}$ open fuzzy for each $x \in G$ by theorem 3.2 This show that each singleton $\{\dot{x}\}$ is open fuzzy in G/\tilde{H} , Therefore G/\tilde{H} is fuzzy discrete space

3.9 Theorem

Let G be FTG and \tilde{H} normal fuzzy subgroup of G and G/\tilde{H} endowed with the quotient fuzzy topology, is FTG.

Proof:

Let *G* be FTG to prove $(\dot{x}, \dot{y}) \to \dot{x}\dot{y}^{-1}$ of $G/\tilde{H} \times G/\tilde{H}$ onto G/\tilde{H} is fuzzy continuous. Let \tilde{W} be any open fuzzy of $\dot{x}\dot{y}^{-1}$ where $\dot{x} = x\tilde{H}$ and $\dot{y} = y\tilde{H}$ clearly $\varphi^{-1}(\tilde{W})$ is open fuzzy in *G* and $xy^{-1} \in \varphi^{-1}(\tilde{W})$, since *G* is FTG $\exists \tilde{U}, \tilde{V}$ in *G* such that $x \in \tilde{U}, y \in \tilde{V}$ and $xy^{-1} \in \tilde{U}\tilde{V}^{-1} \subseteq \varphi^{-1}(\tilde{W})$ $\dot{x}\dot{y}^{-1} \in \varphi(\tilde{U})\varphi^{-1}(\tilde{V}) \subseteq \varphi(\varphi^{-1}(\tilde{W})) = \tilde{W}$ by theorem 3.7 φ is open fuzzy mapping we get there exist an open sets $\varphi(\tilde{U})$ and $\varphi(\tilde{V}^{-1})$ of \dot{x} and \dot{y}^{-1} respectively there fore G/\tilde{H} is FTG \blacksquare

4. β - fuzzy topological group

4.1 Definition

Let G be a group and (G, \widetilde{T}) be a fuzzy topological space. (G, \widetilde{T}) is called β - fuzzy topological group or β -FTG for short if the maps $g: (G, \widetilde{T}) \times (G, \widetilde{T}) \to (G, \widetilde{T})$ defined by g(x, y) = xy and $h: (G, \widetilde{T}) \to (G, \widetilde{T})$ defined by $h(x) = x^{-1}$ are fuzzy $M\beta$ -continuous

4.2 Theorem

Let G be group having fuzzy topology. (G, \tilde{T}) is β -FTG if and only if the mapping $g: (G, \tilde{T}) \times (G, \tilde{T}) \to (G, \tilde{T})$ is defined by $g(x, y) = xy^{-1}$ is fuzzy $M\beta$ -continuous.

4.3 Theorem

Let a be a fixed element of eta -fuzzy topological group (G,\widetilde{T}) then the mappings

$$r_a(x) = xa, l_a(x) = ax, f(x) = x^{-1}$$
 and $g(x) = axa^{-1}$ of (G, \widetilde{T}) onto (G, \widetilde{T}) are

fuzzy Meta -homeomorphisms of G

Proof:

It is clear r_a is one to one and onto

Let \widetilde{W} be any β -open fuzzy set containing xa since (G, \widetilde{T}) is β -FTG there exist β -open fuzzy set \widetilde{U} of x s.t $\widetilde{U}a \subseteq \widetilde{W}$ we get $r_a(\widetilde{U}) \subseteq \widetilde{W}$

Hence r_a is fuzzy $M\beta$ -continuous, It is easy to see that r_a^{-1} of r_a is the mapping $r_a^{-1}(x) = xa^{-1}$ which is fuzzy $M\beta$ -continuous by the same way of r_a , Therefore r_a is $M\beta$ -homeomorphism. Similarly for l_a

Finally the composition of two fuzzy Meta -homeomorphisms

$$r^{-1}{}_{a}(x) = xa^{-1} \text{ and } l_{a}(x) = ax$$
 is fuzzy $M\beta$ -homeomorphisms
Hence $g(x) = r_{a}^{-1} \circ l_{a}(x) = axa^{-1}$ is fuzzy $M\beta$ -homeomorphisms

4.4 Corollary

Let \tilde{F} be β -closed fuzzy, \tilde{P} be an β -open fuzzy and \tilde{A} any subset of β -FTG (G, \tilde{T}) and $a \in G$ then 1- $\tilde{F}a, a\tilde{F}$ and \tilde{F}^{-1} are β -closed fuzzy 2- $\tilde{P}a, a\tilde{P}, \tilde{A}\tilde{P}, \tilde{P}\tilde{A}$ and \tilde{P}^{-1} are β -open fuzzy

4.5 Corollary

Let (G, \tilde{T}) be β -FTG for any $x_1, x_2 \in G$ there exists a fuzzy $M\beta$ -homeomorphism f of G s.t $f(x_1) = x_2$ **Proof:**

Let $x_1^{-1}x_2 = a \in G$ and consider the mapping $f: (G, \widetilde{T}) \to (G, \widetilde{T})$ defined by f(x) = xa then f is fuzzy $M\beta$ -homeomorphism by theorem 4.3 $f(x_1) = x_2$ A space for which corollary 4.5 is true is called a fuzzy β -homogeneous space

4.6 Theorem

Let
$$(G, \widetilde{T})$$
 be β -FTG and $\widetilde{A}, \widetilde{H}$ are fuzzy subset of G then
1- $\beta cl(a\widetilde{A}a^{-1}) = a\beta cl(\widetilde{A})a^{-1}$ where $a \in G$ is definite point
2- if $\beta cl(\widetilde{A}) \times \beta cl(\widetilde{H}) \subseteq \beta cl(\widetilde{A} \times \widetilde{H}), \beta cl(\widetilde{A})\beta cl(\widetilde{H}) \subseteq \beta cl(\widetilde{A}\widetilde{H})$ and
 $\beta cl(\widetilde{A})\beta cl(\widetilde{H}^{-1}) \subseteq \beta cl(\widetilde{A}\widetilde{H}^{-1})$

Proof:

By corollary 4.4 $a\beta cl(\tilde{A})a^{-1}$ is β -closed fuzzy set, since is the smallest β -closed fuzzy set containing $a\tilde{A}a^{-1}$, $\beta cl(a\tilde{A}a^{-1}) \subseteq a\beta cl(\tilde{A})a^{-1}$ Let $f: (G, \tilde{T}) \to (G, \tilde{T})$ be a map defined by $f(x) = axa^{-1}$ by theorem 4.3 f is fuzzy $M\beta$ -homeomorphism by lemma2.5in paper [I. M. Hanafy] $f(\beta cl(\tilde{A})) \subseteq \beta cl(f(\tilde{A}))$ thus $a\beta cl(\tilde{A})a^{-1} \subseteq \beta cl(a\tilde{A}a^{-1})$ we get $a\beta cl(\tilde{A})a^{-1} = \beta cl(a\tilde{A}a^{-1})$ For proof part 2 by theorem 4.6 the map $g: (G, \tilde{T}) \times (G, \tilde{T}) \to (G, \tilde{T})$ is defined by $g(x, y) = xy^{-1}$ is fuzzy $M\beta$ -continuous, since $\beta cl(\tilde{A}) \times \beta cl(\tilde{H}) \subseteq \beta cl(\tilde{A} \times \tilde{H})$, $f(\beta cl(\tilde{A}), \beta cl(\tilde{H})) \subseteq f(\beta cl(\tilde{A} \times \tilde{H}))$ Since f is fuzzy $M\beta$ -continuous $f(\beta cl(\tilde{A} \times \tilde{H})) \subseteq \beta clf(\tilde{A}, \tilde{H}))$ By lemma 2.5 in paper [I. M. Hanafy] thus $\beta cl(\tilde{A})\beta cl(\tilde{H})^{-1} \subseteq \beta cl(\tilde{A}\tilde{H}^{-1})$, for $x \in G$ $M_{\beta cl(\tilde{H}^{-1})}(x) = M_{\cap[\tilde{k};\tilde{H}^{-1} \subseteq \tilde{k};,\tilde{k}, i: s \beta - closed]}(x) = \inf \{M_{\tilde{k}_{l}}(x) : \tilde{H}^{-1} \subseteq \tilde{K}_{l}\}$ $= \inf \{M_{\tilde{k}_{l}^{-1}}(x^{-1}) : \tilde{H} \subseteq \tilde{K}_{l}^{-1}\} = M_{\cap[\tilde{k}^{-1};\tilde{H} \subseteq \tilde{K}_{l}^{-1}]}(x^{-1}) = M_{\beta cl(\tilde{H})}(x^{-1}) = M_{\beta cl(\tilde{H})^{-1}}(x)$ We get $\beta cl(\tilde{H}^{-1}) = \beta cl(\tilde{H})^{-1}$ hence $\beta cl(\tilde{A})\beta cl(\tilde{H}^{-1}) \subseteq \beta cl(\tilde{A}\tilde{H}^{-1})$ Similarly for $\beta cl(\tilde{A})\beta cl(\tilde{H}) \subseteq \beta cl(\tilde{A}\tilde{H})$

4.7 Theorem

Let (G, \widetilde{T}) be an β -FTG and $\beta cl(\widetilde{A}) \times \beta cl(\widetilde{H}) \subseteq \beta cl(\widetilde{A} \times \widetilde{H})$ if \widetilde{H} is a fuzzy subgroup of G then $\beta cl(\widetilde{H})$ is also fuzzy subgroup of G, if \widetilde{H} is a fuzzy normal subgroup of G then $\beta cl(\widetilde{H})$ is also fuzzy normal subgroup of G **Proof:**

In [10] $\widetilde{H}\widetilde{H} \subseteq \widetilde{H} \Rightarrow \beta cl(\widetilde{H}\widetilde{H}) \subseteq \beta cl(\widetilde{H})$ by above theorem $\beta cl(\widetilde{H})\beta cl(\widetilde{H}) \subseteq \beta cl(\widetilde{H}\widetilde{H})$ we get $\beta cl(\widetilde{H})\beta cl(\widetilde{H}) \subseteq \beta cl(\widetilde{H})$...(1) Since \widetilde{H} is fuzzy subgroup $M_{\widetilde{H}}(x) = M_{\widetilde{H}}(x^{-1}) = M_{\widetilde{H}^{-1}}(x)$ for all $x \in G$ $\widetilde{H} = \widetilde{H}^{-1}$ and hence $\beta cl(\widetilde{H}) = \beta cl(\widetilde{H}^{-1})$ we may show that for every $x \in G$ $M_{\beta cl(\widetilde{H}^{-1})}(x) = M_{\beta cl(\widetilde{H})^{-1}}(x)$ using the same method a above $M_{\beta cl(\widetilde{H})}(x) = M_{\beta cl(\widetilde{H})^{-1}}(x) = M_{\beta cl(\widetilde{H})}(x^{-1}) \dots (2)$ from (1)&(2) and in [NASEEM AJMAL] $\beta cl(\widetilde{H})$ is fuzzy subgroup of G, Let \widetilde{H} be a fuzzy normal subgroup of G then $M_{\widetilde{H}}(ab) = M_{\widetilde{H}}(ba)$ for any $a, b \in G$ and hence $M_{x\widetilde{H}x^{-1}}(z) = M_{x\widetilde{H}}(zx) = M_{\widetilde{H}}(x^{-1}zx) = M_{\widetilde{H}}(x^{-1}xz) = M_{\widetilde{H}}(z)$ Hence $x\widetilde{H}x^{-1} = \widetilde{H}$ we get $\beta cl(x\widetilde{H}x^{-1}) = \beta cl(\widetilde{H})$ by theorem 4.6 hence $x\beta cl(\widetilde{H})x^{-1} = \beta cl(\widetilde{H})$ for every $x \in G$ $M_{\beta cl(\widetilde{H})}(xy) = M_{x\beta cl(\widetilde{H})x^{-1}}(xy) = M_{\beta cl(\widetilde{H})x^{-1}}(x^{-1}xy) = M_{\beta cl(\widetilde{H})x^{-1}}(y) = M_{\beta cl(\widetilde{H})}(yx)$ We get $\beta cl(\widetilde{H})$ is fuzzy normal subgroup of G =

4.8 Theorem

Every eta -open fuzzy subgroup \widetilde{H} of eta -FTG (G,\widetilde{T}) is eta -closed fuzzy

Proof:

for each $x \in G, x\widetilde{H}$ is β -open fuzzy by corollary (4.4) hence $\widetilde{H} = (\bigcup x\widetilde{H})^c$ is β -closed fuzzy because $\bigcup x\widetilde{H}$ is β -open fuzzy, where the union is taken over all pair wise fuzzy cosets different from \widetilde{H} .

References

- A. ROSENFFLD, Fuzzy groups. J. Math. Anal. Appl. 35(1971), 512-517
- B. George and M. Bojadaziav, fuzzy sets, fuzzy logic, application .copy right 2007
- C. K. WONG, Fuzzy points and Local properties of fuzzy topology. J. Math. Anal. Appl. 46,316-328(1974)
- C. L.CHANG, fuzzy topological spaces, J.Math, Anal Appl 24(1968),182-190
- D. H. Foster, fuzzy topological group, J.Math .anal ,Appl.67(1979)549-564
- I. Chon, some properties of fuzzy topological group, fuzzy sets and systems 123(2001)(197-201)
- I. M. Hanafy, Fuzzy β -Compactness and Fuzzy β -Closed Spaces, Turk J Math 28 (2004), 281 293.
- L. A. ZADEH, fuzzy sets, infrom.conter.8 1965, 338-353.
- N.R.Das^{a,*}, prabin das^b, Neighbourhood systems in fuzzy topological space fuzzy sets and systems 116(2001)401-408
- NASEEM AJMAL Fuzzy groups with sup Property.INFORMATION SCIENCES 93,247-264(1996)
- R. Lowen, fuzzy topological spaces and fuzzy compactness. J.Math, anal.Appl.56(1976)621-633.
- TUNA HATICE YALVAC Fuzzy sets and functions on fuzzy spaces J. Math. Anal. Appl 126,409-423