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Abstract. This study presents the analysis of plastic buckling of thin flat rectangular 

isotropic plates. To actualize this, the deformation theory of plasticity by Stowell’s 

approach is used in expressing the governing differential equation, and this equation is 

modified by adopting the method of work principle based on the principle of conservation 

of energy. Taylor-Maclaurin series functions truncated at the fifth term is used in 

estimating the deflection functions. The analyzed plates are subjected to uniform uniaxial 

in-plane compression and the direction of the loading is in the longitudinal direction (x-

axis). The three plate boundary conditions considered in this study are: four simply 

supported edges (SSSS); four clamped edges (CCCC); and two clamped edges along the 

x-axis and two simply supported edges along the y-axis (CSCS). The Taylor-Maclaurin 

series formulation satisfied each of the plate boundary conditions and resulted to a distinct 
deflection function for each plate. These deflection functions are substituted into the 

governing equation to obtain the critical plastic buckling loads. Values of the buckling 

coefficient, k, which is derived from the critical plastic buckling load equation, are 

calculated for aspect ratios, p, ranging from 0.1 to 1.0 in steps of 0.1, using values of 

moduli ratio, Et/Es, equal to 0.6, 0.7, 0.8, and 0.9. The results are compared with those of 

a previous investigation. The percentage differences of k with plastic buckling solutions 

for the different values of p and Et/Es of the plates ranged from −4.685% to 6.276%. It is 

shown that the technique proposed in this study is an alternative approximate method for 

analyzing the plastic buckling of thin rectangular isotropic plates under uniform uniaxial 

in-plane loads. 

Keywords: deflection function, deformation plasticity theory, in-plane compression, 

plastic buckling, rectangular plate, Taylor-Maclaurin series. 

1 INTRODUCTION 

A plate is a plane structural member whose thickness is small in comparison with the 

other characteristic dimensions. Plates are used in engineering because of certain 

advantages such as their form efficiency, lighter structures produced from them, and 

economical advantages. Thin plate buckling involves bending in two planes and is 

generally more complicated than those of one–dimensional elements such as columns. 

Because of the two–dimensional buckling nature of thin plates, quantities such as 

deflections and bending moments are functions of two independent variables. Thin plate 

theories may be grouped according to their stress-strain relationships. Linear–elastic thin 
plate theories are based on Hooke’s law which assumes that the relationship between 

stress and strain is linear, while non-linear plate theories consider more complex stress–

strain relationships. When the applied load is increased beyond the elastic buckling load, 

the stresses on either or both axes exceed the elastic limit and the plate exhibits inelastic 

behaviour. Here, the linear-elastic thin plate theory is modified because Hooke’s law is no 

longer valid. Various plastic plate theories have been proposed in literature to account for 

this inelastic effect. 
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The two major plasticity theories in thin plate buckling are the deformation theory of 

plasticity and the incremental (or flow) theory of plasticity. In the deformation theory, the 

strain that corresponds to a certain state of stress is entirely independent of the manner in 

which this stress state has been reached, while in the incremental theory, the strains and 

stresses are related by a function that depend on the loading path (Wang, 2006; Jones, 

2009). Although the deformation theory contains fundamental mathematical 

inconsistencies which are not present in the incremental theory, results from the 

deformation theory tend to be in better agreement with experimental evidence (Chen, 

2003; Aung, 2006). Generally, the deformation theory gives better prediction of buckling 
loads for rectangular plates (Wang, 2006). 

The approaches which can be used to find solutions to the buckling problems of thin 

rectangular plates are the equilibrium or exact approach, the energy approach, and the 

numerical approach. It is difficult to obtain exact solutions for rectangular plates by the 

equilibrium approach except for a rectangular plate with four simply supported edges. 

This is because of the difficulty in assuming satisfactory deflection functions for 

rectangular plates of other boundary conditions (Ibearugbulem, 2012). Energy approaches 

such as the Rayleigh-Ritz method and Galerkin’s method make use of approximate 

deflection functions. Many researchers applying energy approaches made use of the 

trigonometric series in formulating approximate deflection functions. Unfortunately, 

some boundary conditions make it difficult to use trigonometric series functions (Ugural, 
1999; Ventsel and Krauthammer, 2001). In many solutions using the energy approaches, 

trial deflection functions are first selected. This means that the ability of the approximate 

solutions to converge to the exact solution depends on the closeness of the trial deflection 

function to the exact deflection function. The use of numerical methods in plate problem 

formulation is cumbersome and requires expertise in the use of computer. Some previous 

works on plastic buckling of plates include those by Iyengar (1988), Shen (1990), Chen 

(2003), Wang, et al. (2005), and Maarefdoust and Kadkhodayan (2013) using both the 

deformation and incremental theories. It is interesting to note that in literature, all the 

works on analysis of plastic buckling of plates by the equilibrium and energy approaches 

formulated deflection functions using trigonometric series. None of the solutions were 

obtained using polynomial series deflection functions. The limitation of trigonometric 

series functions in buckling analysis of rectangular plates is that it makes use of assumed 
shape functions, and it is difficult to assume satisfying shape functions for many plates of 

various boundary conditions (Ibearugbulem, et al., 2013). Polynomial deflection functions 

have the advantage of being applicable to rectangular plates with mixed boundary 

conditions, such as a plate where the opposite edges of the rectangular plate have different 

boundary conditions (Eziefula, 2014).   

In this paper, the energy approach in the form of a work principle by the principle of 

conservation of energy is used. The governing equation for the plastic thin plate buckling 

is derived using the deformation theory of plasticity by Stowell’s approach, and the 

approximate deflection functions are formulated using polynomial series in the form of 

Taylor-Maclurin series. The rectangular plates analyzed in this study are: four simply 

supported edges (SSSS); four clamped edges (CCCC); and, two clamped edges along the 
x-axis and two simply supported edges along the y-axis (CSCS). The thin plate is taken to 

be flat, homogenous, rectangular, and isotropic. The loading direction is along the x-axis 

as illustrated in Fig. 1. The SSSS, CCCC, and CSCS plates are shown in Figs. 2(a) – 2(c).  

 

 

 

 

 

 
 
 
 
 

Fig. 1. Rectangular plate loaded on two opposite sides along the x-axis 
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Fig. 2(a). SSSS rectangular plate under uniaxial compression along the x-axis 

 

 

 

 

 

 

 

 

Fig. 2(b). CCCC rectangular plate under uniaxial compression along the x-axis 

 

 

 

 

 

 

 

 

Fig. 2(c). CSCS rectangular plate under uniaxial compression along the x-axis 

 

2 STOWELL’S APPROACH TO PLASTIC BUCKLING OF PLATES 

Elbridge Z. Stowell, in 1948, proposed an approach for analyzing the plastic buckling of 

plates based on the deformation theory of plasticity. Stowell’s approach is based on 

Shanley’s approach to inelastic columns, where it is assumed that there is no strain 
reversal. Stowell’s approach is a modification of Ilyushin’s approach, which considers the 
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plate to unload on one face as it buckles. In Stowell’s approach however, it is assumed 

that no unloading takes place during plate buckling (Aung, 2006). Another modification 

is that while Ilyushin used the elastic flexural rigidity, D, in his mathematical formulation, 

Stowell used the plastic flexural rigidity,   . The plastic flexural rigidity of the plate is 

expressed mathematically as shown in Eq. (1): 

    
   

 

 
                                                                                                                           

where Es is the secant modulus and t is the thickness of the plate.  

In comparison with the other approaches used in the deformation theory of plasticity, 

Stowell’s approach gives lower buckling loads which are closer to results obtained from 

experiments for long rectangular plates made of materials such as aluminum alloys. 

Hence, Stowell’s approach to the deformation theory of plasticity was used in this 

analysis. 

In Stowell’s approach, the following assumptions used in the elastic buckling of thin 

plates are adopted in the plastic buckling analysis (Iyengar, 1988):  

(i) The effect of the vertical shear strains,     and    , and the normal strain,   , are 

negligible. 

(ii) The normal stress,   , to the middle plane is neglected in the stress–strain 

relations. 

(iii) The basic force and moment equilibrium equations are valid for the plastic 

buckling analysis. 

(iv) The strain-displacement relations are also valid. 

In deriving the inelastic constitutive equations, the following assumptions are made 

(Iyengar, 1988): 
(i) The plate material is continuous and isotropic.  

(ii) The principal axes of plastic stresses and strains coincide at all times.  

(iii) The volume of the material remains constant (i.e. the material is incompressible). 

(iv) The Poisson’s ratio must increase from its elastic value to 0.5 for the plastic 

condition. 

For a thin rectangular plate subjected to uniaxial compressive in-plane loads along the 

x-axis, Stowell (1948) derived the differential equation for the plastic buckling of the 

plate as: 

 
 

 
 
 

 

  

  

 
   

   
  

   

      
 
   

   
 
  

  
 
   

   
                                                  

where Et is the tangent modulus, Es is the secant modulus, w is the out-of-plane deflection, 

Nx is the in-plane compression along the x-axis, and    is the flexural rigidity of the plate 

in the inelastic range. 

3 METHOD  

3.1 Governing Equation 

The theoretical development begins with the expression of the differential equation in 

non-dimensional coordinates. Expressing Eq. (2) in non-dimensional coordinates gives: 

 

  
 
 

 
 
 

 

  

  

 
   

   
  

   

      
   

   

   
 
   

 

  
   

   
                                 

where p is the aspect ratio, R is the non-dimensional coordinate along the x-axis, and Q is 

the non-dimensional coordinate along the x-axis. These parameters are defined as: 

                                                                                                                                   

                                                                                                                      

where a and b are the length and width of the plate respectively.  
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Equation (3) is the Euler equilibrium of force equation for plastic buckling of a thin 

rectangular plate. Ibearugbulem, et al. (2013) used a technique for transforming Eq. (3) 

based on the principle of conservation of energy in a static continuum. This principle 

assumes that work done by the external applied loads is equal to the resistance of the 

plate. They multiplied the equation of equilibrium of force by the deflection and 

integrated the resulting equation in a closed domain. Applying this technique to Eq. (3), 

Eziefula (2014) derived the governing equation as: 

   

  

      
 
   

 
  

 
 
  

  
  

   
      

   
          

   
    

 

 

 

 
     

   
   
        

 

 

 

 

       

where 

                                                                                                                                   

In Eqs. (6) and (7), H is the buckling curve expression, and A is the amplitude of the 

deflection function. Equation (6) is the governing equation for the plastic plate buckling. 

3.2 Deflection Functions 

The expression for the deflection function in non-dimensional parameters using Taylor-

Maclaurin series formulation truncated at the fifth term was expressed by Ibearugbulem 

(2012) as: 

               
     

     
             

     
     

          

where               and    are the unknown constants of power series with respect to 

the x-direction and               and    are the unknown constants of power series with 
respect to the y-direction.  

A rectangular plate has four edges and each of the edges could be simply supported 

(S), clamped (C) or free (F). The edge conditions of the four sides of the plate are 

represented using these symbols. To calculate the values of the constants           
                   and     of a thin rectangular plate, the boundary conditions for all 

the edges of the plate are applied. For a simply supported edge, the values of the 

deflection and the bending moment at the boundaries are equal to zero. For a clamped 

edge, the values of the deflection and the slope at the boundaries are equal to zero. 

Applying the boundary conditions for each of the three plates analyzed in this paper, the 
deflection function of each plate is obtained by substituting the values of the constants of 

the power series into Eq. (8). From the deflection functions, the unique plate buckling 

expression of each plate is obtained as given from Eqs. (9) – (11). 

SSSS plate: 

                                                                                              

CCCC plate: 

                                                                                            

CSCS plate: 

                                                                                              

3.3 Critical Plastic Buckling Loads 

In calculating the critical plastic buckling load of the SSSS, CCCC, and CSCS plates, 

numerical values of the integrals in Eq. (6) for each plate are first determined. These 

values are then substituted into the plastic buckling equation i.e. Eq. (6) in order to obtain 

the critical plastic buckling load for each plate. From Eq. (6), these integrals are: 
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The critical plastic buckling equations are derived for each plate by applying 
variational principles. These are given in Eqs. (12) - (14). 

SSSS plate:  

      
    

  
 
       

  
 
 

 
 
 

 

  

  

                                                 

CCCC plate:  

      
    

  
 
       

  
 
 

 
 
 

 

  

  

                                                 

CSCS plate:  

      
    

  
 
       

  
 
 

 
 
 

 

  

  

                                                 

where Nx,CR is the critical plastic buckling load of the plate.  

4 RESULTS AND DISCUSSION 

The critical plastic buckling load,      , is a function of the plate buckling coefficient, k. 

The relationship between       and k is: 

       
    

  
                                                                                                                   

The numerical values of the buckling coefficient are presented for each plate. The 

values of the buckling coefficient of each plate are calculated for aspect ratios, p, ranging 

from 0.1 to 1.0 in steps of 0.1, using values of moduli ratio, Et/Es, equal to 0.6, 0.7, 0.8, 

and 0.9.  

SSSS plate: 

For the SSSS plate, the result from the present study gives: 

  
       

  
 
 

 
 
 

 

  

  

                                                                    

From Iyengar (1988), the result for the SSSS plate is: 

  
 

  
 
 

 
 
 

 

  

  

                                                                                                

CCCC plate: 

For the CCCC plate, the result from the present study gives: 

  
       

  
 
 

 
 
 

 

  

  

                                                                    

From Iyengar (1988), the result for the CCCC plate is: 
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CSCS plate: 

For the CSCS plate, the result from the present study gives: 

  
       

  
 
 

 
 
 

 

  

  

                                                                    

From Iyengar (1988), the result for the CSCS plate is: 

  
 

  
 
 

 
 
 

 

  

  

                                                                               

The results obtained from Eqs. (16) - (21) for the SSSS, CCCC, and CSCS plates are 

presented in Tables 1(a)-(d), Tables 2(a)-(d) and Tables 3(a)-(d) respectively. The tables 

show the variation of the buckling coefficient (k) with the aspect ratio (p) and the moduli 

ratio (Et/Es), within the range of 0.1   p   1.0 in steps of 0.1, and Et/Es equal to 0.6, 0.7, 

0.8, and 0.9. For the variation k with p and Et/Es of the plates, it is generally observed that 

k reaches its maximum value when p is equal to 0.1 and that the value of k decreases as p 

approaches the numerical value of one. It is also observed that for a given value of p of a 

particular plate, the k has the maximum value for Et/Es equal to 0.9, and k reduces to a 

minimum value for Et/Es equal to 0.6. The results will coincide with the elastic buckling 

values when Et/Es is equal to unity. 

Comparable solutions for the SSSS, CCCC, and CSCS plates are obtained from 

Iyengar (1988). Polynomial series deflection functions in the form of Taylor-Maclaurin 

series are used in this study while trigonometric series deflection functions are used in 

Iyengar (1988). For the SSSS and CCCC plates, it can be observed from Tables 1(a)-(d) 
and Tables 2(a)-(d) respectively that the solution obtained in this study and Iyengar’s 

solution tend to converge as p increases from 0.1 to 1.0. For values of p of the SSSS plate, 

the percentage differences for the various values of Et/Es between the solution obtained in 

this work and Iyengar’s solution are quite negligible. From the results of the SSSS plate, 

it is shown that the approximate deflection function by Taylor-Maclaurin series used in 

this work is closely approximate to those of the exact shape function. The solutions for 

the SSSS and CCCC plates obtained in this study are upper bound solutions. For the 

CSCS plate, it can be observed from Tables 3(a)-(d) that the solution obtained in this 

study and Iyengar’s solution do not converge as p increases from 0.1 to 1.0. It can also be 

observed that for a given value of p for the CSCS plate, the percentage difference 

between the solutions presented in this study and Iyengar’s solution increases as the value 
of Et/Es decreases. 

5 CONCLUSIONS 

Based on the results of this study, the following conclusions are drawn: 

(i) The plastic buckling equation derived using a work principle based on the 
principle of conservation of energy was found to be satisfactory for expressing 

the governing equation of plasticity of a thin flat rectangular isotropic plate. 

(ii) The Taylor-Maclaurin series formulation truncated at the fifth term satisfied 

each of the plate boundary conditions and resulted to a distinct deflection 

function for each rectangular plate. 

(iii) The results of the study are in good agreement with solutions from a previous 

study.  

(iv) The method proposed in this research work is recommended for use in plastic 

buckling analysis of thin flat rectangular isotropic plates. It is applicable in 

analysis of buckling of rectangular plates with mixed boundary conditions, such 

as a plate where the opposite edges of the rectangular plate have different 
boundary conditions. 
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Table 1(a). Values of k for SSSS plate (Et/Es = 0.9). 

p 
k 

Difference (%) 
Present Study Iyengar (1988) 

0.1 94.6305 94.5100 0.128 

0.2 25.1954 25.1650 0.121 

0.3 12.3815 12.3678 0.111 

0.4 7.9490 7.9413 0.097 

0.5 5.9554 5.9500 0.091 

0.6 4.9335 4.9294 0.083 

0.7 4.3811 4.3778 0.075 

0.8 4.0883 4.0853 0.073 

0.9 3.9547 3.9520 0.069 

1.0 3.9277 3.9250 0.069 

 

Table 1(b). Values of k for SSSS plate (Et/Es = 0.8). 

p 
k 

Difference (%) 
Present Study Iyengar (1988) 

0.1 87.1208 87.0100 0.127 

0.2 23.3179 23.2900 0.120 

0.3 11.5471 11.5344 0.110 

0.4 7.4800 7.4725 0.100 

0.5 5.6550 5.6500 0.088 

0.6 4.7249 4.7211 0.080 

0.7 4.2279 4.2247 0.076 

0.8 3.9710 3.9681 0.073 

0.9 3.8621 3.8594 0.070 

1.0 3.8527 3.8500 0.070 

 
 

Table 1(c). Values of k for SSSS plate (Et/Es = 0.7). 

p 
k 

Difference (%) 
Present Study Iyengar (1988) 

0.1 79.6110 79.5100 0.127 

0.2 21.4405 21.4150 0.119 

0.3 10.7127 10.7011 0.108 

0.4 7.0105 7.0038 0.096 

0.5 5.3546 5.3500 0.086 

0.6 4.5163 4.5128 0.078 

0.7 4.0746 4.0716 0.074 

0.8 3.8536 3.8509 0.070 

0.9 3.7694 3.7668 0.069 

1.0 3.7776 3.7750 0.069 

 

Table 1(d). Values of k for SSSS plate (Et/Es = 0.6). 
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p 
k 

Difference (%) 
Present Study Iyengar (1988) 

0.1 72.1012 72.0100 0.127 

0.2 19.5631 19.5400 0.118 

0.3 9.8783 9.8678 0.106 

0.4 6.5412 6.5350 0.095 

0.5 5.0542 5.0500 0.083 

0.6 4.3077 4.3044 0.077 

0.7 3.9213 3.9186 0.069 

0.8 3.7363 3.7338 0.067 

0.9 3.6766 3.6742 0.065 

1.0 3.7025 3.7000 0.068 

 
 

Table 2(a). Values of k for CCCC plate (Et/Es = 0.9). 

p 
k 

Difference (%) 
Present Study Iyengar (1988) 

0.1 396.0988 372.7067 6.276 

0.2 101.0081 95.3267 5.960 

0.3 46.5508 44.1378 5.467 

0.4 27.7141 26.4317 4.852 

0.5 19.2406 18.4667 4.191 

0.6 14.8977 14.3844 3.568 

0.7 12.5500 12.1777 3.057 

0.8 11.3056 11.0079 2.704 

0.9 10.7382 10.4746 2.517 

1.0 10.6234 10.3667 2.476 

 
 

Table 2(b). Values of k for CCCC plate (Et/Es = 0.8). 

p 
k 

Difference (%) 
Present Study Iyengar (1988) 

0.1 364.1833 342.7067 6.267 

0.2 93.0292 87.8267 5.924 

0.3 43.0046 40.8044 5.392 

0.4 25.7194 24.5567 4.735 

0.5 17.9639 17.2667 4.038 

0.6 14.0111 13.5511 3.395 

0.7 11.8987 11.5654 2.882 

0.8 10.8069 10.5392 2.540 

0.9 10.3441 10.1042 2.374 

1.0 10.3042 10.0667 2.360 

 

Table 2(c). Values of k for CCCC plate (Et/Es = 0.7). 
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p 
k 

Difference (%) 
Present Study Iyengar (1988) 

0.1 332.2678 312.7067 6.255 

0.2 85.0503 80.3267 5.880 

0.3 39.4584 37.4711 5.304 

0.4 23.7247 22.6817 4.598 

0.5 16.6873 16.0667 3.863 

0.6 13.1246 12.7178 3.199 

0.7 11.2473 10.9532 2.685 

0.8 10.3082 10.0704 2.361 

0.9 9.9501 9.7338 2.222 

1.0 9.9851 9.7667 2.236 

 
 

Table 2(d). Values of k for CCCC plate (Et/Es = 0.6). 

p 
k 

Difference (%) 
Present Study Iyengar (1988) 

0.1 300.3522 282.7067 6.242 

0.2 77.0714 72.8267 5.828 

0.3 35.9123 34.1378 5.198 

0.4 21.7300 20.8067 4.438 

0.5 15.4107 14.8667 3.659 

0.6 12.2381 11.8844 2.976 

0.7 10.5960 10.3410 2.466 

0.8 9.8095 9.6016 2.165 

0.9 9.5561 9.3635 2.057 

1.0 9.6659 9.4667 2.104 

 
 

Table 3(a). Values of k for CSCS plate (Et/Es = 0.9). 

p 
k 

Difference (%) 
Present Study Iyengar (1988) 

0.1 95.1036 95.2200  0.122 

0.2 25.7936 26.0050  0.813 

0.3 13.1884 13.4244  1.758 

0.4 9.0481 9.3013  2.722 

0.5 7.4298 7.7000  3.509 

0.6 6.8668 7.1561  4.043 

0.7 6.8568 7.1678  4.339 

0.8 7.1897 7.5253  4.460 

0.9 7.7655 8.1286  4.467 

1.0 8.5311 8.9250  4.413 

Table 3(b). Values of k for CSCS plate (Et/Es = 0.8). 

p k Difference (%) 
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Present Study Iyengar (1988) 

0.1 87.5939 87.7200  0.126 

0.2 23.9162 24.1300  0.886 

0.3 12.3540 12.5911  1.883 

0.4 8.5788 8.8325  2.872 

0.5 7.1294 7.4000  3.657 

0.6 6.6582 6.9477  4.167 

0.7 6.7035 7.0147  4.436 

0.8 7.0724 7.4081  4.532 

0.9 7.6728 8.0361  4.532 

1.0 8.4560 8.8500  4.452 

 
 

Table 3(c). Values of k for CSCS plate (Et/Es = 0.7). 

p 
k 

Difference (%) 
Present Study Iyengar (1988) 

0.1 80.0841 80.2200  0.169 

0.2 22.0388 22.2550  0.971 

0.3 11.5195 11.7578  2.027 

0.4 8.1094 8.3638  3.042 

0.5 6.8290 7.1000  3.817 

0.6 6.4496 6.7394  4.300 

0.7 6.5502 6.8616  4.538 

0.8 6.9551 7.2909  4.606 

0.9 7.5800 7.9435  4.576 

1.0 8.3809 8.7750  4.491 

 
 

Table 3(d). Values of k for CSCS plate (Et/Es = 0.6). 

p 
k 

Difference (%) 
Present Study Iyengar (1988) 

0.1 72.5744 72.7200  0.200 

0.2 20.1613 20.3800  1.073 

0.3 10.6851 10.9244  2.191 

0.4 7.6401 7.8950  3.229 

0.5 6.5286 6.8000  3.991 

0.6 6.2410 6.5311  4.442 

0.7 6.3970 6.7086  4.645 

0.8 6.8377 7.1738  4.685 

0.9 7.4873 7.8509  4.631 

1.0 8.3059 8.7000  4.530 
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