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ABSTRACT: In this paper we present three new methods of order four using an accelerating 

generator that generates root-finding methods of arbitrary order of convergence, based on 

existing third-order multiple root-finding methods free from the third derivative. The first 

method requires two-function and three-derivative evaluation per step, and two other methods 

require one-function and two-derivative evaluation per step. Numerical examples suggest that 

these methods are competitive to other fourth-order methods for multiple roots and have a 

higher informational efficiency than the known methods of the same order.  
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1. INTRODUCTION 

 

Solving nonlinear equation is one of the most important problems in numerical analysis. 

In this paper we consider iterative methods to find a multiple root  . We distinguish with 

two kinds of methods, those which deal with a known order of multiplicity and others with no 

information on multiplicity. 

We introduce root-finding methods, which are produced by suitable accelerating 

generators of iterative functions. An iterative method of order )1( r  is generated from the 

previous method of order )(r using a special transformation. In the following we will present 

an accelerating formula for generating a sequence of iterative methods for determining 

multiple roots of equations. Using this generating formula, in Section 2 we present several 

higher-order iterative methods derived from M. S. Petrović, L. D. Petrović and J. Džunic in 

their paper (2010) and then using three suitable third order methods given by B. Neta in 

(Neta, 2008) we will propose three new methods of the fourth order. We will use the well-

known theorem from the theory of iterative processes. 

 

Theorem 1 (Traub, 1964, Theorem 2.2) 

Let   be an iterative function such that   and its derivatives 
)(,, r   are 

continuous in the neighborhood of a root   of a given function f  if and only if 
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The following theorem is concerned with the acceleration of iterative methods, 

forming the base for generating higher-order methods for multiple roots. 

 

Theorem 2 (Petrović et al,2010, Theorem 2) 

Let )(1 krk xx  ),1,0( k  be an iterative method of order )(r  for finding a 

simple or multiple root of a given function f  (sufficiently many times differentiable). Then 

the iterative method derived by 
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has order of convergence )1( r . The proof of this theorem is in (Petrović et al, 2010). 

Further on we will refer to formula (2) as AG(2).  

 

Remark 1. The ability of AG(2) to produce root-finding methods of an arbitrary order of 

convergence is the main advantage of the generating formula (2). Furthermore, AG(2) can 

generate iterative formulas both for simple and multiple roots without alternation to its 

structure; it is sufficient to start with a suitable chosen initial iterative function )(xr

)2( r . 

 

For example, starting from the Newton method 
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and applying AG(2), we obtain Halley’s third-order method 
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these methods are applied to simple roots. 

We can apply AG(2) to generate iterative methods of an arbitrary order of convergence 

for finding not only simple roots, but also multiple roots of functions without any 

modification. 

We will consider two classes of methods for finding multiple roots: A- methods where 

multiplicity is known, B- methods where multiplicity is unknown. 
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A. Let m  be the order of multiplicity of the desired root   of a given function f  and 

let us 

introduce the notation 
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Starting from the modified Newton method (Schrӧder,1870) of the second order 
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and using AG(2) is obtained the third-order Halley-like method for multiple roots 
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etc.  

 

Remark 2. The above formulas 4  and 5  may be regarded as rediscovered formulas since 

they are originally in (Farmer , Loizou, 1977)  using a different approach. 

 

M. S. Petrović, L. D. Petrović and J. Džunic (Petrović et al, 2010)  have first derived three 

new methods: 

Using the Chebyshev – like method  (Traub, 1977, Petrović et al, 2010)  
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of the third order in (2) is obtained the fourth–order method 
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Using Osada’s third–order method (Osada, 1994)  in (2) is obtained, 
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The third method is obtained by using Ostrowski’s third–order method in (2), 
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B. Let   be a multiple root of a function )(xf , then   is a simple root of the 

function 

)()( xfxf  . Applying the Newton method to the function )()()( xfxfxu  , we 

obtain the iterative method 
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which is of the second order. Schrӧder was the first to derive this method in his paper. 

Applying )(2 x  in (2) is obtained the accelerating method 
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of order three. 

2. NEW METHODS FREE FROM THE THIRD DERIVATIVE 

 

Chebyshev’s method for simple roots is given by: 
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The two–parameter family is: 

 

)]()(1)[()( 23 xCxuxuxx   .                                    (10) 

 

Neta in (Neta, 2008) has given an estimation how to choose the parameters   and   so that 

the method is of the third order for the case of multiple roots. 

So, for )3( m  and 
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we have the third–order Chebyshev’s method (3). 

The case when )3( m  needs to be considered separately, however we will restrict 

our consideration for the cases when )3( m . Also in (Neta, 2008) Neta has developed 

three new methods not requiring second derivative. The first one is a third–order method 

based on one–parameter family of modified Chebyshev’s method [11] 
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The second new method is based on the approximation given by Neta (Neta, 2010) for the 

second derivative in Chebyshev–like method of the third order 
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where, 
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The third method is based on the same approximation of the second derivative in Osada’s 

third–order method 
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where )(xw  is given in (12). 

Applying the Modified Chebyshev method (11), free from the second derivative to formula 

(2) we have, 
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which is a first new method of fourth order and requires the evaluation of the second 

derivative. 

The second new method of the fourth order is derived applying the third order one (12) in 

formula (2)  
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where, 

 

    

    
.

26
)(,

26
)(

,)()()()42(
2

21
2

)3(
)()(

22

11

2

11

2

2

2
2

23

n

nnnn

n

nnn

fh

fhfff
xq

fh

fhff
xv

xqxvuxwCuu
m

uC
mm

x




















 

 

The third new method is derived applying method (13) in formula (2), 
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where, 
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All three new methods, are of the fourth order and require the evaluation of the second 

derivative, in contrast with the methods (4), (5) and (6) proposed in (Petrović et al, 2010) that 

require the evaluation even of the third derivative. In the next Section we will give a table that 

explains betters the advantages of the methods we have proposed. 

 

3. NUMERICAL TESTS 

 

In this section we give a table comparing the efficiency of six methods for multiple roots 

including our new ones developed here. The informational efficiency, E is defined (Traub, 

1964) as 

 

d
p

E  ,                                                         (17) 

 

and efficiency index, I, is defined as 

 

dpI
1

 ,                                                           (18) 

 

wherep is the order of the method and d is the number of function/derivative evaluations per 

step. Clearly it is assumed that the cost of evaluating a function or any of the derivatives 

required is identical. In Table 1 we list methods (4), (5), (6), (14), (15) and (16), all of them of 

the fourth order for finding roots with multiplicity m. 

 

Table 1 

Algorithm p d E I 'f  f   f   

(4) 4 4 1 1.414 1 1 1 

(5) 4 4 1 1.414 1 1 1 

(6) 4 4 1 1.414 1 1 1 

(14) 4 5 0.8 1.3195 2 1 - 

(15) 4 3 1.333 1.5874 1 1 - 

(16) 4 3 1.333 1.5874 1 1 - 

 

The numerical tests of these methods are part of our further work, although we have tested 

method (14) and it shows global convergence. 
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4. CONCLUSIONS 

 

In this paper we have proposed three new methods of the fourth order to find the multiple 

roots of nonlinear equations. The advantage of these methods is that they do not require the 

evaluation of the third derivative and except of method (14) the informational efficiency and 

efficiency index are greater than other methods of the same order of convergence. The first 

new method (14) has informational efficiency and efficiency index smaller than the other 

methods but, although it shows very good convergence. Numerical tests demonstrate very 

good convergence behavior even starting from crude initial approximations. 
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