
American Academic & Scholarly Research Journal Vol. 7, No. 5, July 2015 www.aasrc.org/aasrj

26

Optimizing Large Search Space using DE Based Q-learning

Algorithm

Jaya Sil,
a
 Zenefa Rahaman

b

aIndian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103

India

js@cs.iiests.ac.in
bUniversity of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74104

USA

zenefa-rahaman@utulsa.edu

Abstract.Finding global optimum solution in minimum time from large search space is challenging

due to involvement of large no. of variables and their varied degree of participation in problem

solving process. Complexity of a problem increases with the dimensionality, which must be learnt

efficiently to improve performance of the method. Q-learning, a reinforcement learning algorithm is

used widely to learn the environment dynamically. However, the conventional Q-learning is not fast
and becomes inefficient while solving large scale problem. In the proposed approach by hybridizing

Differential Evolution (DE) algorithm and Q-learning (QL) method (QL-DE) optimal partitioning of

the search space is obtained involving multiple agents with an objective to achieve maximum

classification accuracy. Performance of the proposed algorithm has been compared with state of the

art optimization algorithms.

Keywords:Multi Agents, Differential Evolution algorithm, Q-Learning algorithm, Dimensionality

Reduction

1 INTRODUCTION

Real world optimization problems become complex due to presence of multiple conflicting

objectives, non-linearity and multi-modal non-convex search space. Moreover, search space often

prevents convergence at global optimum in a reasonable time when the problem may get stuck at

local optimum. The existing stochastic search methods like evolutionary algorithms (EA) as found in

Ref. 9 and 18 are able to handle the complexities and combined with existing local search methods to

achieve global optimal solution. However, large search space optimization problem needs devising

efficient learning algorithm to handle dimensionality of the problem.Learning from interaction is a

foundational idea underlying nearly all theories of learning and intelligence. Reinforcement

learningas found in Ref. 5 is goal directed learning where an agent interacts with an unfamiliar,
dynamic and stochastic environment. However, the main drawback of reinforcement learning is that it

learns nothing from an episode until it is over. So the learning procedure is very slow and impractical

for large space applications.

Distributed genetic algorithm based behavior learning was proposed as found in Ref. 7, where they

have used internal reinforcement signal for learning, generated by fuzzy inference. InRef. 7, dynamic

recurrent neural networks are used as action generation module where effectiveness of the learning
algorithm is verified to cooperative research experiment. Three techniques are proposed in Ref. 2 to

improve the performance of the algorithms for large scale continuous global function optimization

namely, random grouping, adaptive weighting and self-adaptation of the sub-component sizes in

Cooperative Co-evolution approach. However, the algorithm does not give guarantee of optimum

results for problem evolving large search space. A Genetic algorithm based reinforcement learning

algorithm is developed as found in Ref. 19 to solve large space application problem. This algorithm

suffers from slow convergence property of genetic algorithm. A new searching method, CLARANS

for clustering large scale applications based upon randomized search using DE is proposed as in

Ref.11. A mobile DE agent has been created along the tangent curve to perform DE operation and

calculate the cost difference of sub-population in different clusters. But it does not give any idea

whether this algorithm is able to solve overlapping sub problems.

In this paper, the large search space has been tackled by dividing the problem into sub-problems

among the agents where the overlapping space is learnt through co-ordination using the proposed DE

file:///C:/Users/user/Desktop/March%202013%20Vol%205%20No%202/Final%20Draft/www.aasrc.org/aasrj
mailto:js@cs.iiests.ac.in
mailto:zenefa-rahaman@utulsa.edu

American Academic & Scholarly Research Journal Vol. 7, No. 5, July 2015 www.aasrc.org/aasrj

27

based QL algorithm. To learn the search space dynamically, QL algorithm has been hybridized with

DE algorithm in order to achieve maximum accuracy in minimum time. The difficulty of applying QL

algorithm in problems involving large action space has been handled by imposing regulated

randomness in the learning method. The mutation operator of DE algorithm resembles the learning of

Q value that introduces diversity in the population and fast convergence property of DE algorithm.

2 BACKGROUND OF THE WORK

2.1 Differential Evolution Algorithm

Differential Evolution algorithm (DE) is a Stochastic, heuristic, population-based optimization

algorithmas in Ref. 16, developed to optimize real valued functions. The DE algorithm maintains

fixed size of population from which the potential solutions are selected using a fitness function. The

steps of DE algorithm are described below.

Initialization of the parameter vectors: DE searches global optimum point in a D-dimensional real
parameter space RD. It begins with a randomly initiated population of size NP with D dimensional

real-valued parameter vectors. The following notation is given for representing i-th vector of the

population at generation G:

XiG = [x1iG,x2iG,x3iG,xDiG]

Mutation: DE generates new individuals or Donor vectors in the population by adding weighted

difference between two population vectors to a third vector, selected randomly. The Donor Vector is

generated using equation (1) and described in Fig. 1.

ViG+1 denote the Donor vector in i-th population at generation G+1. F is the scaling factor typically
lies in the interval [0, 1]. Xri1G, X ri2G and X ri3G are randomly chosen vectors from parent population
with r1, r2 and r3 three randomly chosen numbers uniformly distributed between 1 and NP and
different from each other.

Fig. 1. Mutation operation of DE algorithm

Crossover: The goal is to increase the diversity of the perturbed population vectors. To achieve this
goal, the mutated vector parameters are mixed with the parameters of another pre-determined vector,

i.e. target vector to yield a trial vector. The trial vector is computed in the following way.

The trial vector for generation G+1 is represented as: UiG+1 = (u1iG+1, u2iG+1,......,uDiG+1)

file:///C:/Users/user/Desktop/March%202013%20Vol%205%20No%202/Final%20Draft/www.aasrc.org/aasrj

American Academic & Scholarly Research Journal Vol. 7, No. 5, July 2015 www.aasrc.org/aasrj

28

Each component of the trial vector at generation G+1 isformed using equation (2).

Here randj[0, 1] is the j-th evaluation of a uniform random number generator, Cr is the crossover

constant [0,1] given by the user and jrand is a randomly chosen index {1, 2,D} which ensures
that Ui,G+1 gets at leastone parameter from ViG+1. The DE family of algorithms can use two kinds of

crossover methods, exponential or two-point modulo and Binomial or uniform.

Selection: In selection, if the trial vector yields a lower fitness value than the target vector, the trial
vector replaces the target vector inthe next generation, as given in equation (3). Each population

vector must serve once as the target vector so that NP competitions take place in one generation. The

initial population is chosen randomly andshould cover the entire parameter space.

f(.) is the objective function to be minimized

2.2 Q-Learning

Q-learning is a reinforcement learning procedure used to find an optimal action-selection policy by

learning an action-value function that gives the expected utility of taking an action in a given state.

When such an action-value functionis learned, the policy is framed by selecting the action with

optimal value in each state. Q-learning is defined mathematically by equation (4).

Q(st+1, at+1) = Q(st, at)+ α[rt+1 +γmaxa(Q(st+1, a)- Q(st, at))](4)

Where S is the set of states such thats∈S and A is the set of actions i.e a∈A. Q(st, a t) is the Q-value

at time instant t after performing action at in state st. Rest of the terms in R.H.S. of equation (4)

represents the learned Q-value at time t+1. The learning rate α determines to what extent the newly

acquired information override the old reward by rt+1, the reward at time (t + 1). Discount factor γ
trades off the importance of different reward signals.

Fig. 2: Illustration of Q-learning algorithm

In Fig. 2 an example is described to understand Q-learning method. An agent can pass fromone state

to another without any knowledge of the environment. Suppose an agent in state C and we want the

agent to learn the sequence to reach to the final state F. Say, (A,B,C,D,E,F) are states of the set S

depicted using nodes in the state diagram of Fig. 2 while action is represented by the arrow. When
agent is in state C can go directly to state D but not directly to state B. From state D, the agent can go

either to state B or state E or back to state C. If the agent is in state E, three possible actions can move

file:///C:/Users/user/Desktop/March%202013%20Vol%205%20No%202/Final%20Draft/www.aasrc.org/aasrj

American Academic & Scholarly Research Journal Vol. 7, No. 5, July 2015 www.aasrc.org/aasrj

29

agent to state A, or state F or state D and soon. Given a state diagram the objective of the algorithm is

to find minimum path from any initial state to the goal state.

3 PROPOSED APPROACH

We proposed an algorithm for solving large dimensional problems by integrating DE and QL

algorithm as in Ref. 16, namely QL-DE algorithm. In this paper we modeled the QL-DE algorithm for
both single agent and multi-agent environment.A multi-agent systemis designed to develop methods

that allow building complex systems composed of autonomous agents, capable of enacting the desired

global behaviors, based on local knowledge and possessing limited abilities. DE algorithm is a quick

convergent algorithm while it has too many parameters to handle. On the other hand QL is very slow

algorithm and not very proficient to handle problem with large search space. To overcome the

drawbacks of these algorithms, a synergy of DE and QL is proposed and applied on multi-agent

environment. To overcome slow convergence of QL algorithm, guided randomness has been

introduced in the learning process using different operators of DE algorithm. In QL procedure the Q-

value at a particular state is updated by mutation operation of DE. The mutation operation enforces

diversity as random changes occurto vector space. The donor vector of DE representing the difference

between two population vectors are randomly selected and mapped to update the Q value and
therefore, the approach enforces a new learning paradigm.

3.1 DE based QL algorithm

DE algorithm begins with a randomly initiated population of size NP represented by D dimensional

real-valued parameter vectors. Each vector of the population forms a candidate solution to the

multidimensional optimization problem. Different operators of DE are used to compute Q values at

different operations as explained below.

(i) In the context of DE algorithm, mutation is observed as change or perturbation with a random

element. In the proposed QL-DE algorithm, the Q value is generated randomly using mutation

operation and explores the large search space. The Q vector of QL-DE is = [q1iG, q2iG …….,qDiG] is

evaluated using equation (5).

 (5)

Where,
 is the intermediate Q value generated using mutation and QiG is the old Q value while

random indices r1, r2 ∈[1, 2,……,NP]. The two indices are mutually independent and different from
index i. F is a scalar typically lays in the interval [0.4,1] and acts as the learning rate which controls

the amplification of the differential variation (Xr1G - Xr2G).

Reward is based on the fitness function, defined as exp(-w) such that(w = w1-w2),where w1 is the

fitness function of the parent vector at generation G and w2is thefitness function of the child vector at

generation G+1. The positive value of windicates the fitness function is decreasing (in case of

minimization) in nature when agent changes states and the reward is added otherwise, the reward is

deducted as punishment. Therefore, the proposed algorithm tries to converge to minimum value and
Q-value increases to justify the proper action.

(ii) The goal of crossover operation of QL-DE algorithm is to enforce diversity in the learning

process. To achieve this, the Q vector of one state exchanges itscomponents with the Q vectors of

other states to form the trial vector
 = [q1iG,q2iG……., qDiG] for the i-th target vector QiG. Here,

exchange of elements in different states is performed to impose diversification in Q value that

facilitates exploitation of large search spaceusing equation(6).

 6)

Here, Cr is the crossover constant within [0, 1] and jrand is randomly chosen index such that jrand ∈

[1,2,…,D] to ensure that
 gets at least one parameter from and act as momentum for the

learning procedure.

file:///C:/Users/user/Desktop/March%202013%20Vol%205%20No%202/Final%20Draft/www.aasrc.org/aasrj

American Academic & Scholarly Research Journal Vol. 7, No. 5, July 2015 www.aasrc.org/aasrj

30

(iii) Selection process is invoked to decide whether the target or trial Q vector survives to its next

generation or it should become a member of generation G+1. Qvalues are updated using equation (7).

)

Here f is the fitness function, equivalent to Reward of Q-learning algorithm. Updation, exchange and

selection operations are performed for each individual andrepeated until any of the stopping criteria

are reached.

Stopping Criteria can be defined in a few ways like:

I. By a fixed number of iterations, say Gmax, suitably large depending on the complexity of the

fitness function.

II. When best fitness of the population does not change over successiveiterations.

III. Attaining a pre-specified fitness value, (say,20% of the initial)

3.2 QL-DE algorithm

Algorithm 1:

Step1: F, Cr and population size NP

Step2: Generation no. G=0 and randomly initialize population of size NP, individual PG =
[X1G,X2G,….,XNPG] and QiG= [q1iG,q1iG……, qDiG]

Step 3: Function QL-DE (F, Cr, NP, PG)

WHILE (until stopping criteria is reached)

 FOR i = 1 to NP

Step 3.1 Updation Step: Generate a donor vector
 corresponding to target vector

Step 3.2 Exchange step:
 for the i-th target vector

Step 3.3 Selection Step: Evaluate the trial vector

Step 3.4: G = G + 1

END OF FOR

END WHILE

END of FunctionQL-DE(F,Cr,NP,PG)

3.3 Role of Agents

A complex problem is solved by dividing the problem into sub-problems and multiple agents are

involved to solve each such sub-problem. Here each vector is comprised of multiple variables and

each variable is mapped as a state transition valueor action for a pair of states. Here the states of one

agent are hidden from another agent and there is no interaction between two independent agents.

However, when there is overlapping of sub-problems (common variables), agents interact for learning

behavior of respective agents. The agents communicate through sharing of the common variables and

producing impact on the respective sub-problems by updating thevalues of the common variables. But

at a time stamp only one agent is allowed to make changes to the overlapped elements. Each agent

executes the proposed QL-DE algorithm and communicates through common variable but how an

agent solves a sub-problem that remains hidden from others.

file:///C:/Users/user/Desktop/March%202013%20Vol%205%20No%202/Final%20Draft/www.aasrc.org/aasrj

American Academic & Scholarly Research Journal Vol. 7, No. 5, July 2015 www.aasrc.org/aasrj

31

Say, the initial population or the problem space represented by variables/attributes is divided among

two agents (Agent1 and Agent2) on a random basis. Assignmentof variables between two agents

using QL-DE algorithm is shown in Fig. 3. At each iteration variable assignment continues until

consecutive result remains same.

 Fig. 3: Variable assignment to agents randomly

file:///C:/Users/user/Desktop/March%202013%20Vol%205%20No%202/Final%20Draft/www.aasrc.org/aasrj

American Academic & Scholarly Research Journal Vol. 7, No. 5, July 2015 www.aasrc.org/aasrj

32

The flow of the proposed QL-DE algorithm for multi-agent based system isdescribed in Fig.4.

Fig. 4: Flow diagram of the QL-DE algorithm for Multi Agent system

3.4 QL-DE algorithm for Multi-agent based system (QL-DE-MAS)

Algorithm 2: QL-DE algorithm for Multi-agent based system

Step 1: Initialize F,Cr and population size NP
Step2: Set the generation number G = 0 and randomly initialize a population of NP individuals

PG = [X1G,X2G,….,XNPG] and QiG= [q1iG,q1iG……, qDiG]

Agents = [A1,A2……..An] where, n is the number of agents.

Step 4: QL-DE-MAS (Agents, n, PG, NP, F, Cr)

Step 4.1: Divide the problem into multiple sub-problems so that D no. of variables are

assigned randomly as elements of each Agent with a constraint that all variables should be

treated by at least one agent.

Step 4.2: Call the Function QL-DE (F, Cr, NP, PG) for each element in the Agents

Step 4.3: Join the sub-problem solutions to construct solution of the problem

Step 5: Repeat the above step3 and step4 until the termination criteria is reached.

End

In multi-agent based approach, the attributes or variables of large problem space are distributed

among multiple agents with an aim to attain maximumoutput using minimum number of agents.

Proper allocation of attributes to eachagent using QL-DE algorithm solve large space problem

efficiently.

file:///C:/Users/user/Desktop/March%202013%20Vol%205%20No%202/Final%20Draft/www.aasrc.org/aasrj

American Academic & Scholarly Research Journal Vol. 7, No. 5, July 2015 www.aasrc.org/aasrj

33

4 RESULTS

4.1 Comparison between Q-Learning and QL-DE algorithm

Result of algorithm 1 applied for a single agent are presented using Benchmark functions to find the

converging state and compared with Q-learning algorithm, as shown in figure 5. Result shows faster

rate of convergenceof QL-DE algorithm compare to Q-Learning algorithm.

Fig. 5: Comparison between Q-Learning (blue asterisk) and QL-DE algorithm (red asterisk)

Two curves in Fig.5 show rate of convergence of Q-Learning and QL-DE algorithms. It has been

observed that the cost function of Q-learning is almost 1.5 times higher than the QL-DE algorithm at

the time of convergence.

4.2 Result of Multi-agent based QL-DE algorithm

The QL-DE algorithm has been applied to solve large space problem by dividing the problem into

multiple sub-problems and assigned to multiple agents. Say, 1000variables in population set are

initially randomly distributed among large numberof agents, say 37. After applying QL-DE-MAS

algorithm, number of agents is reduced from 37 to 15, which is almost half of initial number of

agents.

Comprehensive result and comparison of Q-learning and QL-DE algorithm applied in multi-agent

system are shown in Fig.6.

Fig. 6: Comparison between Q-Learning and QL-DE algorithm

5 CONCLUSIONS

The work provides an insight in building a simple yet strong algorithm for single and multi-agent

based system to tackle large search space problem. Each agent individually optimizes the subspace

file:///C:/Users/user/Desktop/March%202013%20Vol%205%20No%202/Final%20Draft/www.aasrc.org/aasrj

American Academic & Scholarly Research Journal Vol. 7, No. 5, July 2015 www.aasrc.org/aasrj

34

using the proposed DE based Q-learning algorithm (QL-DE). Through numerical experiments, it is

observed thatperformance of Q-Learning could be improved by the proposed methods. It proves to be

faster than Q-Learning method. The quick convergence property of DE enhances the convergence of

QL-DE algorithm. It provides a satisfactory result incase of large space application the algorithm is

invariant to initial distributionof variables. The variable resource management and the inter-variable

relations (co-evolution and correlation) can be considered forfurther improvement of the result.

References

AKargar, H. K., Aghmasheh, R., Safari, A., &Govar, G. Z. (2008, December).Multi-Agent-Based

particle swarm optimization approach for PSS designing in multi-machine power systems.

In Power and Energy Conference, 2008.PECon 2008. IEEE 2nd International (pp. 73-78). IEEE.

Anbo, M., Xiangang, P., &Hao, Y. (2012, January).Multi-agent based distributed genetic algorithm

applied to the optimization of self-adaptive PID parameters of hydro-turbine. In Intelligent

System Design and Engineering Application (ISDEA), 2012 Second International Conference on

(pp. 359-363). IEEE.

Bolívar Baron, H., Rojas, M. M., Crespo, R. G., & Martinez, O. S. (2012, September).A multi-agent

matchmaker based on hidden markov model for decentralized grid scheduling. Intelligent

Networking and Collaborative Systems (INCoS), 2012 4th International Conference on.IEEE,

2012.

Cohen, I., Sebe, N., Gozman, F. G., Cirelo, M. C., & Huang, T. S. (2003, June).Learning Bayesian

network classifiers for facial expression recognition both labeled and unlabeled data.

In Computer Vision and Pattern Recognition, 2003.Proceedings.2003 IEEE Computer Society

Conference on (Vol. 1, pp. I-595).IEEE.

G. Rudolph M. Laumanns and H.-P.Schwefel (2001).Mutation control and convergence

inevolutionary multi-objective optimization.In Proceedings of the 7th International

MendelConference on Soft Computing (MENDEL).

Goel, T., & Deb, K. (2002).Hybrid methods for multi-objective evolutionary algorithms.

In Proceedings of the Fourth Asia-Pacific Conference on Simulated Evolution and Learning

(SEAL, 02).(Singapore) (pp. 188-192). Proceedings of the Fourth Asia-Pacific Conference on

Simulated Evolution and Learning (SEAL, 02).(Singapore).

Intille, S. S., &Bobick, A. F. (1999).A framework for recognizing multi-agent action from

visualevidence. AAAI/IAAI, 99, 518-525.8.

Jun, H. B., &Sim, K. B. (1997).Behavior learning and evolution of collective autonomous mobile

robots based on reinforcement learning and distributed genetic algorithms. In Robot and Human

Communication, 1997.RO-MAN'97.Proceedings., 6th IEEE International Workshop on (pp. 248-

253). IEEE.

Knowles, J. D., &Corne, D. W. (2000). M-PAES: A memetic algorithm for multiobjective

optimization. In Evolutionary Computation, 2000.Proceedings of the 2000 Congress on (Vol. 1,

pp. 325-332).IEEE.

Liu, Y. and S. Li,, 2011. A new differential evolutionary algorithm with neighborhood search.In

Information Technology Journal 10, no. 3 (2011): 573-578.

Liu, Xiyu, Yinghong Ma, and Liandi Jiang.Mobile Clustering Agents based on Differential

Evolution.InPervasive Computing and Applications, 2008.ICPCA 2008.Third International

Conference on.Vol. 1.IEEE, 2008.

Maja J. Mataric. (1993, August).Designing emergent behaviors: from local interactions to collective

intelligence. In Proceedings of the second international conference on From animals to animats

2.MIT Press, Cambridge, MA, USA, (pp.432-441).

Milano, M., &Roli, A. (2004).MAGMA: a multiagent architecture for metaheuristics. Systems, Man,

and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 34(2), (pp.925-941).

Oh, C. H., Nakashima, T., &Ishibuchi, H. (1998, May). Initialization of Q-values by fuzzy rules for

accelerating Q-learning.In Neural Networks Proceedings, 1998.IEEE World Congress on

Computational Intelligence.The 1998 IEEE International Joint Conference on (Vol. 3, pp. 2051-

2056).IEEE.

file:///C:/Users/user/Desktop/March%202013%20Vol%205%20No%202/Final%20Draft/www.aasrc.org/aasrj

American Academic & Scholarly Research Journal Vol. 7, No. 5, July 2015 www.aasrc.org/aasrj

35

Omidvar, M. N., Li, X., Yang, Z., & Yao, X. (2010, July).Cooperative co-evolution for large scale

optimization through more frequent random grouping.In Evolutionary Computation (CEC), 2010

IEEE Congress on (pp. 1-8).IEEE.

Rahaman, Z., &Sil, J. (2014, January).DE Based Q-Learning Algorithm to Improve Speed of

Convergence in Large Search Space Applications.InElectronicSystems, Signal Processing and

Computing Technologies (ICESC), 2014 International Conference on (pp. 408-412). IEEE.

Stacy Marsella and JafarAdibi and Yaser Al-onaizan and Gal A. Kaminka and Ion Muslea and

MilindTambe. (1999, April).On being ateammate: Experiences acquired in the design of

robocup teams,Proceedings of the Third Annual Conference on Autonomous

Agents.1999.(pp.221—227).ACM Press.

Wu, J., Xu, X., Zhang, P., & Liu, C. (2011).A novel multi-agent reinforcement learning approach for

job scheduling in Grid computing. Future Generation Computer Systems, 27(5), (pp.430-439).

Zhao, Long, and Zemin Liu. (1996, June).A genetic algorithm for reinforcement learning.IEEE

International Conference on.Neural Networks Vol. 2.(pp. 1056-1060). IEEE.

file:///C:/Users/user/Desktop/March%202013%20Vol%205%20No%202/Final%20Draft/www.aasrc.org/aasrj

