
  www.aasrc.org/aasrj       American Academic & Scholarly Research Journal     Vol 7, No. 4, June 2015 

 

 

177 

Simulation Modeling In Markovian Decision Theory:     A 

Case Study of The Gardener’s Problem 

 
Dr. Eme L.C. (B.Sc, PGD, PGDE, M.Eng. Ph.D), Paul P. Akpan (B.Sc) 

Civil Engineering Department, 

Anambra State University, 

Uli-Nigeria. 

Leeworks2002@yahoo.com 

 

Dr. Uju I. U. (B.Sc, M.Sc, Ph.D) 

Works Department, 

Anambra State University, 

Uli-Nigeria. 

 

 
 Abstract. This paper aims at studying simulation modeling in Markovian Decision theory considers its 

relationship to linear programming and adapts exhaustive enumeration method, policy iteration methods 

of certain stochastic systems of the finite and infinite stage models for solution of the gardener’s 

problems. The objective of the problem is to determine the optimal policy or strategy or action that 

maximizes the expected return (revenue) within the available limited fund over the planning period. 

Consequently, most of the problems are decision problems for the decision maker (the gardener) such as: 

(as” apply fertilizer or do not apply fertilizer” (b)”whether the gardening activity will continue for a 

limited number of years or indefinitely”. In the basic concept of Markovian Decision theory, the number 

of transitional probabilities and computational efforts required to solve a Markov chain grows 

exponentially with the number of states. The linear programming formulation in this paper is interesting, 

but it not as efficient computationally as the exhaustive enumeration method or the policy iteration 

algorithm methods of markovian decision problems, particularly for large values of stationary policies. In 

conclusion ,alternatively contingency and reliability tests were performed as a check which show no 

significant difference between the experimental and theoretical expected results and led to the acceptance 

of null hypothesis.  
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1.INTRODUCTION 

 In the definition of problem, according to Taha (2002),and  Eme (2004) most of the problems are 

decision problems for the decision maker (the gardener) regarding: 

       (a) the option of using or not using fertilizer, again or loss depends on the decision made.  
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      (b) whether the gardening activity will continue for a limited number of years or indefinitely. These 

situations are referred to as finite-stage and infinite stage decision problems. 

       (c) Evaluating the expected revenue resulting from pre-specified course of action for a given state of 

the system. For example fertilizer may be applied when ever the soil condition is poor (state 3). The 

decision – making process in this case is said to be represented by a stationary policy. 

 

2. DISCUSSION OF CONCEPT OF MARKOVIAN DECISION  THEORY    

In developing this concept, effort is concentrated on the use of the Gardner example, due to the nature of 

life problems encountered in most situation of conflict and to make it better understandable. 

      Markovian decision theory according to Eme (2004) was developed by Andrei Markov in [1856 – 

1922]. He was a distinguished Russian mathematician. who developed the new mathematical tools for 

inventory modeling of all statistical probability. And the problems resulting from the game theory and 

dynamic programming motivated the improvement of the discipline such as Markovian decision theory 

and provides a new basis of inventory theory. Markov process originated in the problem formulated by 

Francis Galton.  

      The use of the gardener example throughout this paper with the underlying philosophy that the 

example paraphrases several important applications in the areas of real life, inventory, maintenance, 

replacement, cash flow management, and regulation of electric power, hydro and water resources 

engineering. 

       This paper presents an application of dynamic programming to the solution of a stochastic decision 

process that can be described by a finite or infinite number of states. The transition probabilities between 

the states are described by a Markov chain. The reward structure of the process is also describe by a 

matrix whose individual elements represents the revenue (or cost) resulting from moving one state to 

another both the transition and revenue matrices depend on the decision alternatives available to be the 

decision make. And in the multi- purpose / and multi- objective nature of this paper, the purposes and the 

objective are in confliction to be satisfied with available limited resources. Therefore, the objective of the 

problem is to determine the optimal policy or strategy, or action that maximizes the expected revenue 

over a finite or infinite number of stages.  

       Every year at the beginning of a season, a gardener applies chemical tests to check soil condition. 

Depending on the outcome of the outcome of the tests the gardener productivity for the new season falls 

in one of three states: (1) good (2) fair and (3) poor.  

 

http://www.aasrc.org/aasrj


  www.aasrc.org/aasrj       American Academic & Scholarly Research Journal     Vol 7, No. 4, June 2015 

 

 

179 

Over the years the Gardner observed that current year’s productivity depends only on last year’s soil 

condition. The transition probabilities over a-1-year period from one productivity state to another can be 

represented in terms of the following Markov chain  

    State of the  

                                             System next year  

 

                                               1       2         3 

                   State  of      1      .2      .5         .3 

              the system        2       0      .5        .3 

                this year          3      0       0         1          =  P
1
 

.The transition probabilities in P1 indicate that the productivity for a current year can be not better than 

last year’s, for example, if the soil condition for this year is fair (state 2), next year’s productivity. 5, or 

become poor (state 3), also with probability. 5. 

       The gardener can alter the transition probabilities p1 by invoking other courses of action. Typically 

fertilizer is applied to boost the soil condition,  which yields the following transition matrix p2 

                                               1       2         3 

                                      1      .2      .5         .3 

P
2
 =                               2       0      .5        .3 

                                      3      0        0         1 

To put the decision problem in perspective, the gardener associates a return function (or a reward 

structure) with the transition from one state to another. The return function expresses the gain or loss 

during a 1-year period, depending on the states between which the transition is made. Because the 

gardener has the option of using or not using fertilizer, gain and loses vary depending on the decision 

made. The matrices R1 and R2 summarize the return functions in millions of naira associated with the 

matrices P1 and P2, respectively               

                                               1       2         3 

                                      1      .2      .5         .3 

R
1
 =   r

1
i
j
   =              2       0      .5        .3 

 

                                      3      0        0         1 

 

                                               1       2         3 

                                      1      .2      .5         .3 
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R
2
 =   r

2
i
j
   =              2       0      .5        .3 

 

                                      3      0        0         1 

The elements r2
ij

1 of R2 consider the cost of applying the fertilizer. For example, if the system is in state I 

and remains in state I during next year, its gain will be r1j
2 = 6 compared with r1

11 = 7 when no fertilizer is 

applied. Therefore, what kind of a decision problem does the gardener have? 

       First, we must know whether the gardening activity will continue for a limited number of years or 

indefinitely. These situations are referred to as finite and infinite – stage decision problems. In both 

cases, the gardener would determine the best course of action (fertilize or do not fertilize) given the 

outcome of the chemical tests (state of the system). The optimization will be based on the maximization 

of expected revenue. 

       The gardener may also be interested in evaluating the expected revenue resulting from pre-specified 

course of action for a given state of the system. For example, fertilizer may be applied whenever the soil 

condition is poor (stage 3). The decision making process in this case is said to be represented by a 

stationary policy.  

       Each stationary policy will be associated with a different transition and return matrices, which are 

constructed from the matrices P1, P2, R1 and R2  

For example, for the stationary policy calling for applying fertilizer only when the soil condition is poor 

(state 3), the resulting transition and return matrices are given as   

 

                             .2       .5   .3                   .7       6       3 

                 P
1
 =     0     .5   .5  ,                      R

1
      0   5  1   

                             0      0   .1                                  0    0  -1 

 

These matrices  differ from P1 and R2
  in the third rows only, which are taken directly from P2 and R2 . 

The reason is that P2 and R2  are the matrices that result when fertilizer is applied in every state.  

2.1 Finite-Stage Model  

Suppose that the gardener plans to “retire” from gardening in N years. This model is interested in 

determining the optimal course of action for each year (to fertilize or not to fertilize). Optimality here 

calls for accumulating the highest expected revenue at the end of N years. 

        Let K= 1 and 2 represent the two courses of action (alternatives) available to the gardener. The 

matrices Pk and Rk representing the transition probabilities and reward function for alternative K are 

given in pages 130 and 131, are summarized here for convenience.   

http://www.aasrc.org/aasrj


  www.aasrc.org/aasrj       American Academic & Scholarly Research Journal     Vol 7, No. 4, June 2015 

 

 

181 

                             .2       .5   .3                .7       6       3 

P
1
 =   P

1
ij   =    0     .5   .5  ,R

1
 =   r

1
ij   =     0   5      1   

                             0      0   .1                                0  0      -1 

 

    

    .3    .6       .1                                         6      5    -1 

P
2
 =   P

2
ij   =   .1        .6      .3           R

2
 =   r

2
 i

j
     =    7      4      0                           

                           .05     .4     .55                                           6       3     -2 

 

The gardener’s problem is expressed as a finite-stage dynamic programming (DP) model as follows. For 

the sake of generalization. Suppose that the number of states for each stage (year) is m (=3 in the 

gardener’s example) and define 

Fn (i) = optimal expected revenue of stages n, n + 1, …, N, given that the state of the system (soil 

condition) at the beginning of year n is i  

The backward recursive equation relating fn and fn + 1 can be written as  

             m 

fn(i) = max   ∑   p
k

ij [r
k

ij + fn + 1 (j)]   , n= 1,2,…., N.  ... 3.1.1 

               
k                     j=1 

Where fN+1 (j) = 0 for all j.  

A justification for the equation is that the cumulative revenue, rk
ij  + fn+1 (j), 

resulting from reaching state j at stage n+1 from state i  at stage n occurs with probability pk
ij letting. 

                     m  

v
k

i =∑ p
k

ij r
k

ij 

            
j= 1 

The DP recursive equation can be written as  

fn(i) = max { Vk
j} 

               
 k 

                               m 

fn(i) =max   v
k

j + ∑   p
k

ij fn + 1 (j)  , n= 1,2,…., N- 1.     … 3.1.2 
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k                      j=1

 

 2.2 The Gardener’s Problem Case 1 

In this case, we solve the gardener’s problem using the data summarized in the matrices P1, P2, R1, and 

R2, given a horizon of 3 year only (N=3). Because the values of vk
i will be used repeatedly in the 

computations, they are summarized here for convenience. 

Table 2.1 

 Recall that k=1 represents “do not fertilize” and k=2 represent “fertilize”  

  i  v
1

i v
2

i  

                      1          5.3      4.7 

            2           3       3.1 

                      3          -1        .4 

 

2. 3 Infinite Stage Model  

The steady-state behavior of a Markovian process is independent of the initial state of the system. This 

model is interested in evaluating policies for which the associated Markov chains allow the existence of a 

steady-state  

       Solution. Section 3.6 provides the conditions under which a Markov chain can yield steady-state 

probabilities.There are two methods for solving the infinite-stage problem. The first method calls for 

evaluating all possible stationary policies of the decision problem. This is equivalent to an exhaustive 

enumeration process and can be used only if the number of stationary policies is reasonably small. 

The second method, called policy iteration, is generally more efficient, also a validity and reliability test 

for the first method, this is when policy iteration method is without and with discounting respectively, 

because it determines the optimum policy iteratively.  

 

2. 4 Exhaustive Enumeration Method       

 Suppose that the decision problem has total of S stationary policies, and assume that ps
, R

s 
 are the (one-

step) transition and revenue matrices associated with the policy, s =1,2,….., s. The steps of the 

enumeration method are as follows.  

Step 1. Compute vs
i, the expected one-step (one-period) revenue of policy s  

                given  state i, i= 1,2,…., m  

Step 2. Compute πs
i, the long-run stationary probabilities of the transition    

                 matrix ps association with policy’s. These probabilities, when they 

 exist, are computed from the equations.  
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  πs ps = πs
      ... 3.3.1 

   πs
1 + πs

2 + …… + πs
m =1 …3.3.2 

 where πs = (πs
1,  π

s
2, ……. πs

m ).  

Step 3. Determine Es, the expected revenue of policy s per transition step  
 

(period), by using the formula.  

                                m 

                Es = ∑ πs
1 v

s
i 

                                               
i=1 

 Step 4. the optimal policy s* is determine such that  

Es*
 = max {Es}  

            S 

We illustrate of the method by solving the gardener problem for an infinite 

 period planning horizon.  

2. 5 The Gardener’s Problem Case II 

Table 2.2. The gardener’s problem has a total of eight stationary policies, as the following table shows: 

 

 

 

The 

matrices PS and RS for polices 3 through 8 are derived from these of policies 1 and 2. we thus have  

                     .2     .5    .3               7       6       3 

       P
1
 =        0     .5     .5   ,R

1
 =    0 5       1 

           0      0       1     0 0     -1 

 

                    .3      .6     .1               6       5      -1 

       P
2
 =     .1       .6     .3   ,R

2
 =    7       4       0 

        .05     .4     .55     6  3      -2 

 

                     .3    .6    .1               6       5      -1 

       P
3
 =       0    .5      .5  ,R

3
 =    0  5       1 

           0     0      1     0  0     -1 

 

                    .2      .5    .3               7       6       3 

       P
4
 =     .1       .6     .3   ,R

4
 =    7       4       0 

          0       0      1               0  0     -1 

 

 

Stationary Policy, s                       Action  

1 Do not fertilize at all  

2 Fertilize regardless of the state 

3 Fertilize whenever in state 1 

4 Fertilize whenever in state 2 

5 Fertilize whenever in state 3 

6 Fertilize whenever in state  1 or 2 

7 Fertilize whenever in state  1 or 3 

8 Fertilize whenever in state  2 or 3 
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                    .2      .5    .3               7       6      3 

       P
5
 =      0      .5     .5  ,R

5
 =    0  5      1 

        .05     .4     .55     6  3     -2 

 

 

                  .3       .6     .1                  6       5      -1 

       P
6
 =    .1       .6     .3   ,R

6
 =   7       4       0 

         0        0      1              0 0      -1 

 

                    .3      .6     .1                   6       5      -1 

       P
7
 =      0      .5      .5  ,R

7
 =    0  5      1 

        .05     .4     .55     6  3      -2 

 

                    .2     .5     .3               7       6      3 

       P
8
 =    .1       .6      .3     ,R

8
 =    7       4       0 

        .05    .4      .55     6  3      -2 

 

 

 

 

 

 

 
Table 2.3 
The values of Vk

i can thus be computed as given in the following table. 
 

    V
s
i 

  s       i  = 1      i = 2      i  = 3  

 

            1      5.3             3            -1 

                       2      4.7            3.1          .4 

                       3      4.7              3           -1 

                       4      5.3            3.1          -1 

                       5      5.3              3            .4 

                       6      4.7            3.1           -1 

                       7     4.7               3            .4 

                       8     5.3             3.1           .4 

 
The computations of the stationary probabilities are achieved by using the equations. 

πs Ps = πs  

                                    π1 +  π2 +  …. + πm  =  1 

               Consider s = 2. The associated equations are   

                  .3π1 +  .1π2 +  .05π3 = π1 

                         .6π1 + .6π2  +  .4π3  = π2 

                  .1π1 + .3π2  +  .55π3  = π3 
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                        π1 +  π2  +   π3  = π1  

 

(Notice that one of the first three equations is redundant.).The solution yields as follow for policy 2.  

 

π
2

1 = 6  ,  π
2

2  = 31 ,  π
2

3  = 22 
        59             59               59 

In this case, the expected yearly revenue is  

                                  3 

E2 =   π2
j v

2
1 

      i = 1 

        =  1  (6 x 4.7 + 31 x 3.1  + 22 x .4 ) = 2.256 

                            59 

The following table summarizes πk and Ek
  for all the stationary policies. (Although this will not effect 

the computations in any way, note that each of policies 1,3, 4, and 6 has an absorbing state: state 3. This 

is the reason π1 = π2 = 0 and π3 = 1 for all these policies,) 

 

 

 
 

 

 

 

 

 

 

 

          

 

Table 2.4 

Policy 2 yields the largest expected yearly revenue.The optimum long-range policy calls for applying 
fertilizer regardless of the state of the system.  

 

 

    V
s
i 

  s       π
2

1                π
2

2             π
2

3    E
s
         

 

            1         0            0             1      -1 

                       2       
6
/59         

31
/59        

22
/59    2.256 

                       3         0            0               1      .4 

                       4         0             0              1      -1 

                       5      
5
/154         

69
/154        

80
/154    1.724 

                       6        0              0               1        -1 

                       7    
5
/137         

62
/137        

80
/137    1.734 

                       8     
12

/135         
69

/135       
54

/135    2.216 

 
 

3 CONCLUSION  
In the finite-stage model of the gardener’s problem case1, the optimal solution shows that for years 1 and 

2, the gardener should apply fertilizer (k* = 2) regardless of the state of the system. In year 3, fertilizer 
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should be applied only if the system is in state 2 or 3 (fair or poor soil condition). The total reward for the 

three years are f1 (1) = 10.74 if the state of the system in year 1 is good , f1 (2) = 7.92 , if it is fair, and f1 

(3) = 4.23, if it is poor.   

        In the exhaustive enumeration method of infinite-stage model of the gardener’s problem Case II, 

policy 2 yields the larges expected yearly revenue (2.256).  
        The optimum long – range policy calls for applying fertilizer regardless of the state of the system. In 

the alternative, contingency and reliability tests were performed and it was found that: the x2 values of 

.936 to 6.146 were interpreted from x2
 table of probability values at  0.100 level of significance. The 

degree of freedom necessary to intercept x2 values were determined from the frequency table by the 

number of rows minus one times number of columns minus one (r-1) (c-1) i.e (3-1)(3-1) = 4. 

        Since the obtained x2 values of 0.936 to 6.146 were less than the critical value of 7.77944, the null 

hypothesis are accepted. There is relationship between the state of the system this year and the system 

state of the system next year. The chi square was not based on a fictitious data , for the case of the 

gardener’s problem when fertilizer is applied and not applied. In the test of how well the linear estimator, 

y = a + bx fits the raw data, Correlation Coefficient, r which ranges from 0.4 to 1.0 result in good to 

perfect linear fit for the raw data.  Conclusively, there is no significant difference between the 

experimental and theoretically expected result, which led to the acceptance of null hypothesis.  
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