
www.aasrc.org/aasrj American Academic & Scholarly Research Journal Vol. 5, No. 3, April 2013
Special Issue

143

Packaged software implementation as requirements

engineering practices at SMSDCs

Issam Jebreen,
a
 Robert Wellington

b

a SERL, School of Computing & Mathematical Sciences, Auckland University of Technology
Auckland 1142, New Zealand

ijebreen@aut.ac.nz
b School of Computing & Mathematical Sciences, Auckland University of Technology

Auckland 1142, New Zealand
rwelling@aut.ac.n

Abstract. An enduring problem in PS implementation has been the misalignments between

software functions and users’ needs. This problem is exacerbated by the fact that most current

requirements engineering approaches are appropriate when software is to be developed from

scratch, not for packaged software implementation. However, it is now the case that in most

organizations, new software is created by integrating functionality from existing software and

components or by implementing packaged software. To explore this area, we study cases of
packaged software (PS) implementation in two software development companies. Our

research design follows an interpretive approach, in which analysis was undertaken using an

inductive approach. From an analysis of the cases, we induced that when implementing

packaged software, there is a greater need for certainty regarding whether what the packaged

software infrastructure requires and what the user’s IT infrastructure has match each other.

Furthermore, analysts may use work-arounds, but this is in order to minimize customization,

rather than to reduce conflicts between requirements.

Keywords: requirement engineering, packaged software implementation.

1 INTRODUCTION

In recent years the market for large packaged software (PS) has become saturated (Morabito

et al., 2005). PS companies and vendors have therefore begun to target the small to medium-

sized PS market (attempting to sell packages to small – medium enterprises (SMEs), and

various midrange or less complex software packages have been developed. SMSDCs are

considered to be fundamentally different from large PS companies in several respects. In

addition, studies of PS implementations have argued that findings about implementations in

large companies cannot be applied to SMSDCs & SMEs (Buonanno et al., 2005; Laukkanen

et al., 2007). Some distinguishing characteristics of SMEs include ownership type, culture,

structure, and market orientation (Laukkanen et al., 2007). Other researchers have found that

when it comes to IT/IS adoption, SMEs are constrained by limited resources and limited IS

knowledge, or by a lack of IT expertise (Buonanno et al., 2005; Laukannen et al., 2007).
These distinguishing characteristics of SMEs may influence the PS implementation issues

they face (Zach et al., 2012). PS implementation remains a challenge for many SMSDCs

(Malhotra & Temponi, 2010; Olson & Staley, 2012; Zach et al., 2012). Despite the

importance of PS implementation being recognized by former studies, there has been little

research exploring this issue further. In particular, discussions about SMSDCs rarely occur in

the literature about PS implementation, and how the structure of SMSDCs shapes the software

throughout its life cycle of implementation is rarely mentioned (Zach et al., 2012).

Previous researchers have also highlighted that there is a lack of knowledge about the

requirements engineering practices that assist PS implementation in these types of companies,

and due to the particular characteristics of SMSDCs, several software engineering researchers

file:///C:/Users/user/Desktop/March%202013%20Vol%205%20No%202/Final%20Draft/www.aasrc.org/aasrj
mailto:ijebreen@aut.ac.nz
mailto:rwelling@aut.ac.n

www.aasrc.org/aasrj American Academic & Scholarly Research Journal Vol. 5, No. 3, April 2013
Special Issue

144

have argued that most current requirements engineering practices are unsuitable for SMSDCs

(Cox et al., 2008; Quispe et al., 2010).

The use of poor requirements engineering (RE) practices has often been identified as one

of the major factors that can jeopardize the success of a software project. Meanwhile,

researchers have also recognized that following appropriate RE practices contributes to the

success of software projects. For example, Aranda et al. (2007) stated that gathering and

managing requirements properly are key factors when it comes to the success of a software

project. There is a general critical consensus that RE practices plays a very important role in

the success or failure of software projects. However, it is not possible to improve RE practices

until areas that need improvement in an organization’s current RE practice have been

identified. Meanwhile, the solution for improving RE practices will be different in each
company; it has been found that a one-size-fits-all approach does not work in such a scenario

(Cox, 2009; Quispe, 2008; Aranda et al., 2007).

This study presumes that the specific characteristics of SMSDCs may influence the RE

practices in PS implementation. The recent literature has paid little attention to RE practices

of PS implementation from the perspective of Small to Medium-sized Software Development

Companies (SMSDCs) (Wagner et al., 2010; Zach et al., 2012).

2 RELATED WORKS

In this article Haddara & Zach (2011) reviewed the existing literature that relates to the

adoption and running of ERP systems in SMEs. Noting that ERP systems have now been
almost universally adopted by large organizations, Haddara & Zach (2011) stated that ERP

vendors have now begun to turn their attention to small-medium sized organizations (SMEs).

While ERP systems may be of benefit to SMEs, “the risks of adopting an ERP system are

different for SMEs since SMEs are likely to have limited resources, and have business

characteristics that are different from those of large organizations”. Haddara & Zach (2011)

shed light on the areas that are lacking in current research into ERP adoption in SMEs, and

provide information intended to help ‘practitioners, suppliers, and SMEs when embarking on

ERP projects’. In fact, “SMEs have been recognized as fundamentally different environments

compared to large enterprises” (Welsh & White, 1981), no reviews had been published of

literature the deals with ERP implementations within SMEs (Haddara & Zach, 2011).

Haddara & Zach (2011) stated literature shows that there has been a gradual increase of

academic interest in ERP usage within SMEs, and that the most frequent methods employed
within research articles on this topic are case studies and surveys. They found that the

implementation phase was the most discussed phase in the literature on ERP use in SMEs – a

finding that accords with the main discussion topics of literature on ERP systems within

larger organizations. However, the adoption decision, the acquisition phase, and the use and

maintenance phase are also given reasonable degrees of attention within the literature on ERP

use in SMEs. The phases for which literature was very scarce or non-existent are ERP

evolution and ERP system retirement (Haddara & Zach, 2011). Moreover, Haddara & Zach

(2011) stated that only two research papers considered ‘in-house developed systems’ to be a

feasible option for SMEs, even though “standard ERP packages could compel rigid structures

and inflexibility on niche SMEs”. Hence, it reasonable to assume that the recent literature has

paid little attention to RE practices of PS implementation from the perspective of SMSDCs.
The literature on implementation issues surveyed by Haddara & Zach (2011) found that

“project activities, coordination, and project sponsors (Muscatello et al., 2003), employee

behaviour, individual characteristics of ERP project management’s team, and organization

culture have a great effect on the success of ERP implementations in SMEs (Chien et al.,

2007)”. One study conducted by Newman & Zhao (2008) investigated the importance of

business process modeling and business process re-engineering during implementations

carried out in SMEs (Haddara & Zach, 2011). The conclusion of Newman & Zhao (2008)

file:///C:/Users/user/Desktop/March%202013%20Vol%205%20No%202/Final%20Draft/www.aasrc.org/aasrj

www.aasrc.org/aasrj American Academic & Scholarly Research Journal Vol. 5, No. 3, April 2013
Special Issue

145

study was that “in some cases, ERP systems should be customized to fit with niche SMEs and

not vice versa, as they might lose their competitive advantage by complying with standard

ERP processes”.

After offering such brief discussions of the literature reviewed, Haddara & Zach (2011)

make some further comments about the literature reviewed and suggest further avenues for

study. First, they suggest that despite the fact that they found and reviewed 77 articles, this

was still a very small number of articles to be published on the topic within 10 years, given

the growing importance of ERP systems in relation to SMEs. They believe that “SMEs did

not receive appropriate attention in comparison with ERP in LEs”. They also identify specific

gaps in the literature. These include a lack of studies that look at “ex-ante cost estimation,

financial feasibility, and investment evaluation studies of ERP projects”, lack of comparison
between “SME’s-specific ERP and general ERP systems” or between “industry-specific ERP

packages vs. general ERP ones”. Haddara & Zach (2011) found that very few studies had

been made relating to the evolution of ERP systems within SMEs, and no studies had

considered the retirement phase of an ERP system in relation to SMEs. Lastly, Haddara &

Zach (2011) stated that while they did find 77 articles relating to ERP systems within SMEs,

most of the SMEs were involved with traditional manufacturing, and it could be interesting to

obtain results pertaining to different types of industries, or it could be of benefit if studies

relating to ERP system use within SMEs were more explicit about exactly what kinds of

manufacturing or industry the SME was involved with. They also noted that most of the

studies conducted have considered companies located in America, Australia, Europe, and

Asia. There was a shortage of studies investigating SMEs in Africa or in the Middle East. In

general, existing literature have adopted a one sided perspective (in data collection) e.g.
customer side, while other perspectives could enhance the understanding of certain

phenomena. Also missing are any studies which investigate cases of failed ERP

implementations within SMEs.

An enduring problem in PS implementation has been how to identify misalignments

between software functions and users’ needs. The current requirements engineering

approaches (traditional RE) are appropriate when software is to be developed from scratch

(Sommerville et al., 2012). However, in most organization, new software is now created by

integrating functionality from existing software and components or by implementing

packaged software. In such cases, it makes little sense to specify requirements in terms of

what the software should do – the functionality is already defined in this software

(Sommerville et al., 2012). Rather, requirements engineering when companies implement
packaged software more frequently involves looking at what functions software provides,

who needs those functions to do their job, and at what misalignments occur between software

functions and users’ needs.

According to Karlsson et al. (2007) there are “several studies that concern or include RE

issues. However, none of these focus primarily on PS development and implementation.

Furthermore, in most of these studies, the studied projects and organisations are mainly large,

both in terms of the number of persons and requirements involved, and in terms of the

duration of the projects”. Quispe et al. (2010) highlighted that “there is a lack of knowledge

about the requirements engineering practices in these types of companies [small-medium]”.

This lack of knowledge is particularly apparent when it comes to packaged software

companies. It is in fact difficult for researchers to gain much knowledge about how SMSDCs
carry out RE given that most SMSDCs seldom request external support, probably due to

limited finances. However, RE research should eventually enable those companies to become

aware of more state of the art or innovative RE techniques and to be able to improve their RE

practice without external help (Merten et al., 2011).

Several questions remain unanswered. One core question that remains is: How are

the RE practices of packaged software implementation enacted in SMSDCs?

file:///C:/Users/user/Desktop/March%202013%20Vol%205%20No%202/Final%20Draft/www.aasrc.org/aasrj

www.aasrc.org/aasrj American Academic & Scholarly Research Journal Vol. 5, No. 3, April 2013
Special Issue

146

2 RESEARCH METHOD

An ethnographic research method has been applied in relation to the two software

development companies who participated in this research, Organisation 1 and Organisation 2.

The business of both organizations considered in this study is dominated by the provision of

packaged software solutions. This study follows Hammersley & Atkinson’s (2007) discussion

of various features of ethnographic research method:

 People’s actions are studied in their everyday context, rather than under conditions
created by the researcher. In other words, the research takes place in the field.

 Data is gathered from a range of sources, including documentary evidence of various
kinds, but participant observation and/or relatively informal conversations are often

the main means of collecting data.

 Data collection is, for the most part, relatively ‘unstructured’ in two senses. First, it

does not involve following through with any specific fixed and detailed research

design. Secondly, the categories that are used to interpret what people say or do are
not built into the data collection process through the use of observation schedules or

a questionnaire. Instead, they are generated through the process of data analysis.

 The focus is usually on a few cases, generally of a fairly small scale, perhaps a single

setting or single group of people. This is to facilitate in-depth study.

 The analysis of data involves interpretation of the meanings, functions, and
consequences of human actions and institutional practices, and how these are

implicated in local, and perhaps also wider, contexts.

 What are produced, for the most part, are verbal descriptions, explanations, and
theories; quantification and statistical analysis play a subordinate role.

4 RESULT & DISCUSSION

Our inductive analysis of the collected data, across both organisations, provided a rich set of

findings to inform an alternative view of RE. Two main processes that emerged from the

analysis of the collected data are presented. The first process is pre-implementation. The

second process is during implementation that development of an in-depth understanding of

client’s needs. This involves two sub-processes. First, is the identifying misalignment
between packaged software functions and users’ needs, which involves conducting

discussions with users to determine the future requirements of the software (what functions

are desired by the users).

The pre-implementation RE practices stage in this study resembles such feasibility studies

as those used in traditional RE practices at a high abstract level. This is because feasibility

studies in traditional RE and the pre-implementation stage discussed here are similar in terms

of their purpose, such as dealing with software objectives, time and budget. However, at the

practical level, pre-implementation RE practice has its own specification. Table 1 shows

feasibility study in traditional RE (Sommerville, 2004) vs. pre-implementation RE practices.

Table 1 Feasibility study vs. Pre-Implementation

Elements Traditional RE Practices

Feasibility study

Pre-Implementation RE Practices

Feasibility study

file:///C:/Users/user/Desktop/March%202013%20Vol%205%20No%202/Final%20Draft/www.aasrc.org/aasrj

www.aasrc.org/aasrj American Academic & Scholarly Research Journal Vol. 5, No. 3, April 2013
Special Issue

147

Goals Are the overall objectives of the
organization satisfied by the

proposed system?

Can the system be developed

with the proposed budget and

timeline?

What are the client issues?
What is the possible solution?

Is the possible solution within the

scope of the company’s domain?

What are the cost and time required

for a possible solution?

Business

dimension

Worthiness of proposed system. Instilling confidence in the client,

securing business, and creating a
software offer.

Software

analysis

dimension

Information gathering to assist

in the assessment of proposed

system.

Information gathering to identify

client’s issues, new requirements and

new features needed (if any) to

assess cost and time for proposed

solution implementation.

Stakeholders Management of departments,

experts, technical professionals,

and people who are familiar

with such a system.

Potential client, client’s issues, client

analysis information and client

company structure information

Tools Interviews, questionnaire. Live Scenario, and discussion and

negotiation.

Domain

knowledge

The development organization

and the customer can cooperate
to ensure that the domain is

understood.

The development organization has to

be an expert in the domain.

Assessment

criteria

Objectives of the organization

are satisfied by proposed

system.

System is developed with the

proposed budget and timeline.

A new future level, Customization

level and Output level.

Critical

Decision

Considers the worthiness of the

proposed system, or regards

changes, development

decisions, seclude and budget.

The possible solution is within the

company’s domain.

Output Feasibility study report and

recommendations.

Packaged software offer, assessment

report, and client issues, organization

structure and analysis.

Scoping
Factors

Budget, timeline, technical and
development issues.

Packaged software assessment level,
elements, and imitation of work

domain, client organization size, and

client’s issues.

Table 2 follows a practice adopted from Sawyer et al. (1997) and Cox et al. (2009) and

shows the requirements document practices in traditional RE vs. during implementation RE.

The practices are mentioned in the table in terms of how they were used by analysts; the result

is therefore based on an ethnographic account. When describing the during implementation

processes, we use the four levels of assessment (as theorized by Sawyer et al. (1997)) in

relation to the requirements document practices. These levels of assessment are the following:

standardised use, Common use, discretionary use, and never use.

 Standardised use (SU): This practice has a documented standard and is always
followed as part of the organisation’s software development process i.e. it is

mandatory. Followed when practices are perceived as having a high value.

file:///C:/Users/user/Desktop/March%202013%20Vol%205%20No%202/Final%20Draft/www.aasrc.org/aasrj

www.aasrc.org/aasrj American Academic & Scholarly Research Journal Vol. 5, No. 3, April 2013
Special Issue

148

 Common use (CU): This practice is widely followed in the organisation but is not
mandatory. Followed when practices are perceived as having a medium value.

 Discretionary use (DU): This practice is used at the discretion of individual project

managers. Some may have introduced the practice for a particular project. Followed

when practices are perceived as having a low value.

 Never used (NU): The practice is never or rarely applied. Followed when practices

are perceived as having a no value.

The table uses guideline classifications relating to ‘good requirements practices’ that

consist of ‘basic’, ‘intermediate’, and ‘advanced’. In this case, the ‘basic’ practices can

continually be repeated, and it is possible to estimate costs, time, and resources associated

with these practices. Meanwhile, ‘intermediate’ practices are more complex and lead to a
‘defined’ requirements engineering process. Lastly, ‘advanced’ practices are designed to help

support the continuous improvement within any RE process. Some of these practices involve

advanced technology and advanced methods which require specialist knowledge. They may

also involve guidelines for organizational change. The requirements document itself is a

document that effectively communicates requirements to customers, managers and

developers.

Table 2 Requirements documents in Traditional RE vs. During Implementation

Requirements Documents Practices

Type No Traditional RE Practices During

Implementation

Basic RD1 Define a standard document structure Standardised use

Basic RD2 Explain how to use the document Common use

Basic RD3 Include a summary of the requirements Standardised use

Basic RD4 Make a business case for the system Standardised use

Basic RD5 Define specialised terms Discretionary use

Basic RD6 Make document layout readable Common use
Basic RD7 Help readers find information Common use

Basic RD8 Make the document easy to change Common use

New Requirements Documents Practices

Basic RD9 Users’ needs/Misalignments specification

document

Standardised use

Basic RD10 Estimating time needed for users’ needs

document

Standardised use

Basic RD11 Estimating cost needed for users’ needs

document

Standardised use

Basic RD12 Include users’ needs validation document Standardised use

Table 3 shows the requirements elicitation practices in traditional RE, using terminology

and concepts adopted from Sawyer et al. (1997) and Cox et al. (2009) vs. during

implementation RE practices. Requirements elicitation is defined as a group of practices
designed to help discover the requirements for a system. These practices are followed by

analysts in order to elicit requirements from the stakeholders related to the system. However,

the requirements elicited also depend on the application domain and on the organizational and

operational environments of the system.

Table 3 Requirements elicitation in traditional RE vs. During implementation

Requirements Elicitation Practices

file:///C:/Users/user/Desktop/March%202013%20Vol%205%20No%202/Final%20Draft/www.aasrc.org/aasrj

www.aasrc.org/aasrj American Academic & Scholarly Research Journal Vol. 5, No. 3, April 2013
Special Issue

149

Type No Traditional RE Practices During
Implementation

Basic RE1 Assess system feasibility Standardised use

Basic RE2 Be sensitive to organisational and

political consideration

Standardised use

Basic RE3 Identify and consult system

stakeholders

Standardised use

Basic RE4 Record requirements sources Standardised use

Basic RE5 Define the system’s operating

environment

Standardised use

Basic RE6 Use business concerns to drive

requirements elicitation

Standardised use

Intermediate RE7 Look for domain constraints Discretionary use

Intermediate RE8 Record requirements rationale Common use

Intermediate RE9 Collect requirements from multiple

viewpoints

Discretionary use

Intermediate RE10 Prototype poorly understood

requirements

Standardised use

Intermediate RE11 Use scenarios to elicit requirements Standardised use

Intermediate RE12 Define operational processes Discretionary use

Advanced RE13 Reuse requirements Standardised use

New Requirements Elicitation Practices

Basic RE14 Use live software demonstration to

elicit users’ needs

Standardised use

Basic RE15 Use a user manual Standardised use

Table 4 shows the requirements analysis and negotiation in traditional RE practices, using

terminology and concepts adopted from Sawyer et al. (1997) and Cox et al. (2008) vs. during

implementation RE practices. Requirements analysis and negotiation are defined as practices

that help analysts to identify and resolve problems associated with the elicited requirements.

These may include identifying and resolving misalignments, incompatibility issues, and

missing information.

Table 4 Requirements analysis and negotiation in traditional RE vs. During implementation

Requirements Analysis and Negotiation

Type No Traditional RE Practices During

Implementation

Basic RA1 Define system boundaries Standardised use

Basic RA2 Use checklists for requirements analysis Discretionary use

Basic RA3 Provide software to support negotiations Standardised use

Basic RA4 Plan for conflicts and conflict resolution Standardised use

Basic RA5 Prioritise requirements Discretionary use

Intermediate RA6 Classify requirements using a multi-
dimensional approach

Standardised use

Intermediate RA7 Use interaction matrices to find conflicts

and overlaps

Discretionary use

Advanced RA8 Assess requirements risks Standardised use

New Requirements Analysis and Negotiation

Basic RA9 Use print-out of a screen shot to clarify

conflicts, and engaging in conflict

resolution

Standardised use

file:///C:/Users/user/Desktop/March%202013%20Vol%205%20No%202/Final%20Draft/www.aasrc.org/aasrj

www.aasrc.org/aasrj American Academic & Scholarly Research Journal Vol. 5, No. 3, April 2013
Special Issue

150

Basic RA10 Use live case scenarios to support
negotiations

Standardised use

As can be seen from information provided in Table 1, there are a number of differences in

practice, and differences of purpose, between the elements of feasibility studies carried out in

traditional RE and for Pre-Implementation RE. Traditional RE and Pre-Implementation RE

share similarities as both can be seen as comprised of the same kinds of elements, and as, to

some degree, sharing similar objectives and being influenced by similar business concerns

and technical concerns. For example, the stages involved in both processes can be divided

into the same ten dimensions, which involve goals, the business dimension, the software

analysis dimension, stakeholders, tools, domain knowledge, assessment criteria, critical

decision, output, and scoping factors. However, within these dimensions, important

differences appear. The analyst concerned with carrying out RE for packaged software
implementation will be concerned with accessing different information and meeting different

objectives than the analyst concerned with building custom-made software.

For example, when building a bespoke system, traditional RE will focus on identifying

whether the timeline and budget that have been proposed are feasible, and then with making

sure that the organization’s objectives can actually be met by the system that has been

proposed. With Pre-Implementation RE, however, the analyst must instead think about what

the client’s specific issues are and identify whether any existing packages offered by the

analysts’ company can offer a solution. The analysts engaging in Pre-Implementation RE

must also consider the possibility of refusing a request for a particular solution if that solution

falls outside the scope of the company or outside the scope of the company’s current products.

Part of the process of identifying whether the solution is within the company’s scope may

involve thinking about the time and cost involved with implementing a particular package or
with making requested changes to that package.

With traditional RE, the main goal of the ‘business dimension’ of RE is concerned with

establishing whether the proposed system is ‘worthy’: whether it can be created and whether

it will actually satisfy the demands of the business and be the best possible system for the

business. The analyst carrying out Pre-Implementation RE, however, will be engaged with

different concerns, such as actually selling the proposed packaged system to the client by

showing them how the package operates and how it could fulfill their requirements. The

analyst carrying out Pre-Implementation RE must actively instill confidence in the client,

secure the client’s business, and create a software product offer.

The software analysis dimension in traditional requirements engineering and pre-

implementation requirements engineering is quite similar. The analysts in both forms of
requirement engineering carry out a range of activities that find out the client’s issues that

need solving and that help them to find initial requirements. They will later need to follow up

on such requirements by checking in case new requirements are needed or new features need

to be added to the proposed solution. If new features are required, they will again need to

assess the cost and time involved with such requirements. However, there are some

differences between the two forms of requirements engineering. In pre-implementation

requirements engineering, analysts need to consider the modifications to existing functions

that have been requested by clients. However, such considerations do not concern analysts

practicing traditional requirements engineering.

The stakeholders involved with the two different forms of RE are also different. As shown

in Table 1, with traditional RE, the analyst generally interacts only with people who manage
departments within the client business, or with experts, technical professionals, and people

who are familiar with such a system. These are the people whose needs or input the analyst

will be concerned with. With Pre-Implementation RE, however, the analyst’s considerations

will be somewhat broader, as they need to first identify potential clients, then gather as much

file:///C:/Users/user/Desktop/March%202013%20Vol%205%20No%202/Final%20Draft/www.aasrc.org/aasrj

www.aasrc.org/aasrj American Academic & Scholarly Research Journal Vol. 5, No. 3, April 2013
Special Issue

151

information as possible about the potential clients, and then prepare to attract the clients by

identifying the client’s issues that need solving. This is done via the use of forms relating

client analysis information and by using the analyst company’s databases that contain

information about potential clients’ client company structures.

The tools used in the two forms of RE also differ, since different forms of information

need to be collected. In traditional RE the analyst is able to collect the required information by

holding interviews and by using questionnaires. However, in Pre-Implementation RE the

analyst engages in Live Scenarios to demonstrate the proposed solution, or will find out what

the requirements for the solution are, and at the same time, sell the solution, by carrying out

discussions and various forms of negotiation. The Pre-Implementation analyst is engaged in

designing a system that meets the client’s requirements, and in demonstrating and selling that
proposed solution.

The level of domain knowledge required for the analyst engaging in these different forms

of RE also changes. With traditional RE, the analyst can gain sufficient knowledge of the

client’s domain by interacting with and listening to the client. The client is more active in

advising the analyst what is needed in the system. With Pre-Implementation RE, however, the

client will expect the development organization to already be an expert in the domain and to

offer them the best possible solution or a range of viable solutions.

The assessment criteria used to design and develop the system also differ between

traditional RE and Pre-Implementation RE. With traditional RE, the feasibility of the system

is seen to depend on whether the objectives of the organization will be satisfied by the

proposed system. If it is considered that they will be, the system will then be developed in

accordance with the proposed budget and timeline. Pre-Implementation RE for packaged
software involves its own set of assessment criteria. As detailed in discussions earlier, these

assessment criteria involve a new future level (which assesses proposed changes to the

existing package), a customization level which assesses the impact that may result from

modifying existing functions to fill gaps in requirements, and an Output level which consists

of creating new reports or modifying existing reports.

With traditional RE, the main Critical decision that needs to be made usually relates to

confirming the worthiness of the proposed system. Other critical decisions, or factors in the

critical decision may relate to changes to the proposed system, or to budgetary factors or

company developments. The analyst engaging in Pre-Implementation RE will make a Critical

decision when deciding whether the solution needed by the potential client is within the

domain of the analyst’s company.
When considering the Output dimension of traditional RE, the analyst will rely on a

feasibility study report and on recommendations. Meanwhile, the analyst working with Pre-

Implementation RE considers the project feasibility and responds to its feasibility by means of

the assessment report, information gained about client issues, organization structure and

analysis, and the packaged software offer that is made to the client.

The last element of comparison between feasibility studies in traditional RE and Pre-

Implementation RE is Scoping Factors. Again, the Scoping Factors involved in the two

different forms of RE are not the same. In traditional RE, scoping is guided mainly by the

budget that has been set for the project, and by its timeline, and also by technical and

development issues. Pre-Implementation RE practice differs from this, as Scoping for

packaged software is influenced by a number of factors, including assessment levels, the
packaged software offer elements, and the limitation of the work domain, the client’s

organization size, and the client’s issues.

As can be seen from Table 2, in traditional RE, all of the levels of requirements

documents practices remain at ‘basic’, whereas many of those practices associated with

during implementation RE are actually at the same level as in traditional RE. The results show

that the most common standardised requirements documentation practices are to define a

file:///C:/Users/user/Desktop/March%202013%20Vol%205%20No%202/Final%20Draft/www.aasrc.org/aasrj

www.aasrc.org/aasrj American Academic & Scholarly Research Journal Vol. 5, No. 3, April 2013
Special Issue

152

standard document structure (RD1), to include a summary of the requirements (RD3), and to

make a business case for a project (RD4). The practices of explaining how to use the

document (RD2), making the document layout readable (RD6), helping readers find

information (RD7), and making the document easy to change (RD8), can be considered as

‘Common use’ practices in during implementation RE. This means that these practices are

widely followed in the organisations but are not mandatory. We also found that during

implementation RE documentation practices approached defining specialised terms (RD5)

with ‘discretionary use’.

However, during my field work, we also discovered a range of new practices that were

carried out, that are related to the requirements document. We have listed these ‘New

Requirements Documents Practices’ in the lower half of Table 2. These new practices involve
creating a users’ needs/misalignments specification document, estimating the time and cost

related to creating the users’ needs/misalignments document, and the users’ needs validation

document. All of these practices are carried out at a ‘basic’ level. They are a part of during

implementation RE, being practiced with ‘standardised use’. These new practices have not

been identified during previous studies of traditional RE and packaged software requirements

engineering practices.

In Table 3 we see that in traditional requirements elicitation, many RE practices are

carried out at the ‘basic’ level; that is, they are almost always practiced. However, just over

half of the practices operate at the ‘intermediate’ or advanced levels. In during

implementation RE, most of those practices that are basic in traditional RE are standard

practices. Practices RE 7 through RE 13, as shown in the table, are practiced rather differently

in traditional RE and during implementation RE. In traditional RE, a large range of practices
could be considered as ‘intermediate’ practices, that is, they are more complex and not always

practiced. Those practices regarded as ‘intermediate’ include looking for domain constraints,

recording the requirements rationale, collecting requirements from multiple viewpoints,

prototyping poorly understood requirements, using scenarios to elicit requirements, and

defining operational processes. In during implementation RE, however, these practices are

carried out at a range of levels. For example, prototyping poorly understood requirements and

using scenarios to elicit requirements are carried out as standardised practices, but looking for

domain constraints, collecting requirements from multiple viewpoints, and defining

operational processes are practices that are only carried out with discretionary use. One other

requirements elicitation practice in this group, recording the requirements rationale, can be

considered as having ‘normal’ use in during implementation RE. Another difference occurs
with reusing requirements (RE 13). The practice of reusing requirements is an advanced

practice in traditional RE, a practice used to improve a system, whereas in during

implementation RE, it has a completely standardised use.

We have also identified some new requirements for traditional RE and during

implementation RE, in terms of requirements elicitation practices. The new practices are

using a live software demonstration to elicit the users’ needs, and using a user manual. These

practices are carried out at the ‘basic’ level, and have ‘standardised use’ in during

implementation RE. Therefore, they are almost always practiced during documented

standards when used in during implementation RE.

We can see from Table 4 that in traditional requirements analysis and negotiation, many of

the practices are considered basic elements of RE. For example, RA 1 through RA 5, which
involves defining system boundaries, using checklists, providing support to support

negotiations, planning in case of conflicts, and prioritizing requirements, are all listed at the

basic level in the table above. In during implementation RE, all but two of these practices

have a standardised use, RA 1, 3, 4, and 6 therefore have documented standards that are

followed. Two practices, however, are approached differently, with RA 2 (using checklists for

requirements analysis) and RA 5 (prioritising requirements) receiving discretionary use. This

file:///C:/Users/user/Desktop/March%202013%20Vol%205%20No%202/Final%20Draft/www.aasrc.org/aasrj

www.aasrc.org/aasrj American Academic & Scholarly Research Journal Vol. 5, No. 3, April 2013
Special Issue

153

is understandable, since analysts, during packaged software implementation use screenshots

to validate user needs, rather than using a checklist. This is because the software has already

been created and only needs modification. During packaged software implementation,

prioritizing requirements is not a basic practice. Rather analysts collect requirements in a

circular process and develop those requirements that are agreed upon at the time or that their

managers agree they should give priority to (i.e. their managers act with ‘discretion’ regarding

the requirements). There are further differences in how RA 6, 7, and 8 are practiced within the

two approaches. In traditional RE, classifying requirements using a multi-dimensional

approach is an intermediate practice, therefore not always performed, however, in during

implementation RE, it is a standardised practice. In traditional RE using interaction matrices

to find overlaps or possible conflicts is considered an intermediate practice. In during
implementation RE, this practice is discretionary, not universal. Lastly, while traditional RE

treats assessing requirements risks as an advanced practice (RA 8), this is a standardised

practice in during implementation RE.

Once more, we identified some new practices related to requirement analysis and

negotiation. These include using print-outs of screen shots to clarify conflicts, and engaging in

other forms of conflict resolution (RA9), and using live case scenarios to support negotiations

(RA10). The use of printouts and other forms of conflict resolution, and the use of live case

scenarios are carried out at the ‘basic’ level in traditional RE, and have ‘standardised use’ in

during implementation RE.

5 CONCLUSION

The research reported in this paper is one of few empirical studies focused on requirement

engineering practices for packaged software implementation. It offers an in-depth, qualitative

view of requirement engineering to implement packaged software. In relationship to the

existing literature on packaged software, our focus is on activities near the end of a software

package’s lifecycle. Given the growing importance of packaged software, and the apparent

inevitability of packaged software implementation, it is increasingly necessary to understand

the requirement engineering practices for packaged software implementation. Our

contribution to this effort is a parsimonious theoretical result portraying the interactions

among requirement engineering practices and for packaged software implementation. The

result draws its inspiration from earlier literature on requirement engineering and other related

literatures.
Packaged software implementation is a unique type of IS software, with characteristics

that distinguish it from requirement engineering, traditional system development and initial

adoption of a commercial system. In a packaged software implementation, the software

company has substantial control over the development of packaged software, and the client

organization becomes vulnerable to software company actions. Future research could consider

problematic area within existing RE tools is that they do not support a distributed

collaboratively collection and analysis of requirements, which can be said is necessary in the

packaged software context since packaged software requirements for implementation comes

from defendable requirements. In such cases, it makes little sense to specify requirements in

terms of what the software should do – the functionality is already defined in this software.

Rather, we argue that requirement engineering practices for PS implementation should be
approached from a misalignments perspective, which focuses on what functions software

provides, who needs a particular function in order to do their job, and what misalignments

exist between software functions and users’ needs.

file:///C:/Users/user/Desktop/March%202013%20Vol%205%20No%202/Final%20Draft/www.aasrc.org/aasrj

www.aasrc.org/aasrj American Academic & Scholarly Research Journal Vol. 5, No. 3, April 2013
Special Issue

154

References

Aranda, J., Easterbrook, S., & Wilson, G. (2007). Requirements in the wild: How small companies do

itIEEE. Symposium conducted at the meeting of the Requirements Engineering Conference, 2007.

RE'07. 15th IEEE International

Buonanno, G., Faverio, P., Pigni, F., Ravarini, A., Sciuto, D., & Tagliavini, M. (2005). Factors affecting

ERP system adoption: a comparative analysis between SMEs and large companies. Journal of

Enterprise Information Management, 18(4), 384-426.

Chien, S.-W., Hu, C., Reimers, K., & Lin, J.-S. (2007). The influence of centrifugal and centripetal

forces on ERP project success in small and medium-sized enterprises in China and Taiwan.

International Journal of Production Economics, 107(2), 380-396.

Cox, K., Niazi, M., & Verner, J. (2009). Empirical study of Sommerville and Sawyer's requirements

engineering practices. IET software, 3(5), 339-355.

Haddara, M., & Zach, O. (2011). ERP systems in SMEs: A literature review IEEE. Symposium

conducted at the meeting of the System Sciences (HICSS), 2011 44th Hawaii International

Conference.

Hammersley, M., & Atkinson, P. (2007). Ethnography: Principles in practice: Taylor & Francis.

Karlsson, L., Dahlstedt, Å . G., Regnell, B., Natt och Dag, J., & Persson, A. (2007). Requirements

engineering challenges in market-driven software development–An interview study with

practitioners. Information and Software technology, 49(6), 588-604.

Laukkanen, S., Sarpola, S., & Hallikainen, P. (2007). Enterprise size matters: objectives and constraints

of ERP adoption. Journal of Enterprise Information Management, 20(3), 319-334.

Malhotra, R., & Temponi, C. (2010). Critical decisions for ERP integration: Small business issues.

International Journal of Information Management, 30(1), 28-37.

Merten, T., Lauenroth, K., & Bürsner, S. (2011). Towards a new understanding of small and medium

sized enterprises in requirements engineering research. In Requirements Engineering: Foundation

for Software Quality (pp. 60-65): Springer.

Muscatello, J. R., Small, M. H., & Chen, I. J. (2003). Implementing enterprise resource planning (ERP)

systems in small and midsize manufacturing firms. International Journal of Operations &

Production Management, 23(8), 850-871.

Newman, M., & Zhao, Y. (2008). The process of enterprise resource planning implementation and

business process re‐ engineering: tales from two Chinese small and medium‐ sized enterprises.

Information Systems Journal, 18(4), 405-426.

Olson, D. L., & Staley, J. (2012). Case study of open-source enterprise resource planning

implementation in a small business. Enterprise Information Systems, 6(1), 79-94.

Quispe, A., Marques, M., Silvestre, L., Ochoa, S. F., & Robbes, R. (2010). Requirements Engineering

Practices in Very Small Software Enterprises: A Diagnostic StudyIEEE. Symposium conducted at

the meeting of the Chilean Computer Science Society (SCCC), 2010.

Sawyer, P., Sommerville, I., & Viller, S. (1997). Requirements process improvement through the phased

introduction of good practice. Software Process Improvement and Practice, 3(1), 19-34.

Sommerville, I., Lock, R., & Storer, T. (2012). Information requirements for enterprise systems. arXiv

preprint arXiv:1209.5246.

Sommerville, I. (2004). Software engineering (Seven Edition ed.): Addison-Wesley Publishers Limited.

file:///C:/Users/user/Desktop/March%202013%20Vol%205%20No%202/Final%20Draft/www.aasrc.org/aasrj

www.aasrc.org/aasrj American Academic & Scholarly Research Journal Vol. 5, No. 3, April 2013
Special Issue

155

Wagner, E. L., Newell, S., & Piccoli, G. (2010). Understanding Project Survival in an ES Environment:

A Sociomaterial Practice Perspective. Journal of the Association for Information Systems, 11(5).

Xu, L., & Brinkkemper, S. (2007). Concepts of product software. European Journal of Information

Systems, 16.

Zach, O., & Munkvold, B. E. (2012). Identifying reasons for ERP system customization in SMEs: a

multiple case study. Journal of Enterprise Information Management, 25(5), 462-478.

file:///C:/Users/user/Desktop/March%202013%20Vol%205%20No%202/Final%20Draft/www.aasrc.org/aasrj

