The Effect of Using Distance Measures in Image Processing Systems

Waleed Abdullah Araheemah AL-Elayawi, Nazar Mostafa J. ALsarraf

Head of Department of Informative Technology, Technical College of management Foundation of technical education, Ministry of Higher Education& Scientific Research

Department of Statistics, College of Administration And Economics, University of Baghdad Ministry of Higher Education& Scientific Research

Abstract. The effect of using distance measure for compare between textural images can be shown by use difference distance measure on deferent textural images ,result show that distance measure effected by more than one factor in addition to kind of image Using distance and correlation measures can be done in order to show the effect of them

Keywords: Digital image processing, Distance measures ,MSE,MAPE,MPE,RMSD,MAE, low pass filter, high pass filter, image enhancement, image smoothing ,image Sharpening

1 INTRODUCTION

Digital image processing is a subset of the electronic domain wherein the Image is converted to an array of small integers called (pixels) representing Physical quantity such as scene radiance, stored in a digital memory, and processed by computer or other digital hardware.

Digital image processing, either as enhancement for human observers or performing autonomous analysis, offers advantages in cost, speed, and flexibility, and with the rapidly falling price and rising performance of personal computers it has become the dominant method in use.

Digital image processing has many advantages over analog image processing; it allows a much wider range of algorithms to be applied to the input image and by making changes on it in order to get out put image an image May be defined as a two-dimensional function f(x, y). Where(x and y)are spatial (plane) coordinates, and the amplitude of (f) at any pair of coordinates (x, y) is called the intensity or gray level of the image at that point.

In our research we applied some filters (enhanced, smoothing and Sharpening) On some pictures with versos sizes and compare the output images by using some statistical measures Results shows that output images effected with many factors such that (size, filter kind, statistical compares measures)

2 AIM OF RESEARCH

The aim research is to compare high pass and low pass filters on input textural images with verses sizes by applying some statistical measures.

3 LOW PASS FILTER

These are used to emphasize large homogenous areas of similar tone and reduce the smaller detail. Low frequency areas are retained in the image resulting in a smoother appearance to the image

4 HIGH-PASS FILTERS

Allow high frequency areas to pass with the resulting image having greater detail resulting in a sharpened image.

5 IMAGE ENHANCEMENT

One of the strengths of image processing is that it gives us the ability to enhance the view of an area by manipulating the pixel values, thus making it easier for visual interpretation. There are several techniques which we can use to enhance an image, such as Contrast Stretching and Spatial Filtering

In image enhancement, the goal is to accentuate certain image features for subsequent analysis or for image display. Examples include contrast and edge enhancement, pseudo coloring, noise filtering, sharpening and magnifying. Image enhancement is useful in feature extraction, image analysis and visual information display. The enhancement process itself does not increase the inherent information display in the data. It simply emphasizes certain specified image characteristics. Enhancement algorithms are generally interactive and application dependent.

Enhancing the contrast of images is one of the major issues in image processing, especially backlit images. Contrast enhancement can be achieved by stretching the dynamic range of important objects in an image. There are many algorithms for contrast enhancement and among these

6 IMAGE SHARPENING.

Due to the reversibility of the Sobolev diffusion equations The most basic approach would be to run the Sobolev diffusion equations in the backward direction on a given image u0 and at some stopping time, say($\tau > 0$), we declare u(τ) to be the sharpened version of u0. However, it is not clear in the approach how one would appropriately Select the stopping time $\tau > 0$, as it would necessarily vary between images and applications domains.

7 IMAGE SMOOTHING

The effects of noise on images can be reduced by smoothing, that is, by replacing every pixel by a weighted average of its neighbors. This operation can be expressed by the following convolution (6):

$$\tau_{ij} = \sum_{i=a \text{ start}}^{a \text{ end}} \sum_{j=b \text{ start}}^{b \text{ end}} g_{(a,b)} f_{(i-a,j-b)}$$

where (g) is the convolution mask (or kernel or point-spread function) that lists the weights, (f) is the image, and

(a start, a end, b start, b end)delimit the domain of definition of the kernel, that is, the size of the neighborhood

involved in smoothing. The kernel is usually rotationally symmetric, as there is no reason to privilege, say, the pixels on the left of position i; j over those on the right

(-a start= a end, -b start= b end)

 $g_{(a,b)} = \gamma(r)$ Were

 $r = \sqrt{a^2 + b^2}$

is the distance from the center of the kernel to its element a; b. Thus, a rotationally symmetric kernel can be obtained by rotating a one-dimensional function (r) defined on the nonnegative around the origin of the plane

The purpose of smoothing is to reduce noise and improve the visual quality of the image. Often, smoothing is referred to as (filtering). There are two types of filters that have been found useful (spatial)and (temporal) for both static and dynamic images

IMAGE PROCESSING ALGORITHM 8

The adoptive algorithm depend on input image with (M * N) pixels each one with gray level such that (fig 1) each pixel with

 P_{ij} with i = 1, ..., N & j = 1, ..., M

Then by taking process image with (M-2*N-2) pixels each one with same original gray level except starting and ending rows and columns

 P_{ij}^* with i = 1, ..., N - 2 & j = 1, ..., M - 2By using process image and calculate the adoptive filter such that

$$\tau_{ij} = \sum_{i=2}^{N-1} \sum_{j=2}^{M-1} P^*_{ij} a_{ij}$$

Were

 P^*_{ij} represent image processing pixels

 τ_{ii} represent output pixels

a_{ii} represent filter pixels

The simplest filtering technique is the nine-point (3X3) window, The nine-point will take a (3X3) square of pixels (total of nine) and determine the number of counts in each pixel, this same operation can be repeated for the entire computer screen or restricted to a designated area.

The output image will be with (τ_{ii}) as a pixel values For adoptive filters (a_{ii}) will be

For Low pass enhancing filter

ſ	0	1	0
	1	2	1
	0	1	0

For Low pass Sharpening filter

1	1	1
1	1	1
1	1	1

For Low pass smoothing filter

1	2	1
2	4	2
1	2	1

For High pass enhancing filter

0	-1	0
-1	5	-1
0	-1	0

For High pass Sharpening filter

-1	-1	-1
-1	9	-1
-1	-1	-1

For High pass smoothing filter

1	-2	1
-2	5	-2
1	-2	1

9 STATSITCAL MEASURES

Pixel values of input images will be changed after any process on it and pixel values of output images will have deferent values compare with input one, changes of pixel value will be low or high depend on some factors

In order to get changes on pixels value we have the following statistical measures

$$MSE = \frac{\sum_{i=2}^{N-2} \sum_{j=2}^{M-2} (P_{ij} - \tau_{ij})^{2}}{(M-2)(N-2)}$$
$$MAPE = \frac{\sum_{i=2}^{N-2} \sum_{j=2}^{M-2} \left(\frac{/P_{ij} - \tau_{ij}}{\tau_{ij}}\right)}{(M-2)(N-2)}$$
$$MPE = \frac{\sum_{i=2}^{N-2} \sum_{j=2}^{M-2} \left(\frac{P_{ij} - \tau_{ij}}{\tau_{ij}}\right)}{(M-2)(N-2)}$$
$$RMSD = \sqrt{\frac{\sum_{i=2}^{N-2} \sum_{j=2}^{M-2} (P_{ij} - \tau_{ij})^{2}}{(M-2)(N-2)}}$$

$$MAE = \frac{\sum_{i=2}^{N-2} \sum_{j=2}^{M-2} / P_{ij} - \tau_{ij} / (M-2)(N-2)}{(M-2)(N-2)}$$

Were

 P_{ij} represent input pixels value τ_{ij} represent output pixels value

M x N represent size of image

10 EXPERIMENTAL TEXTURAL IMAGES

In order to determine research results we take (6) textural images as input data Such that fig(1) D1=breast high D2=breast low D3=breast_low_2 D4=colon high D5=colon low D6=colon_low_2

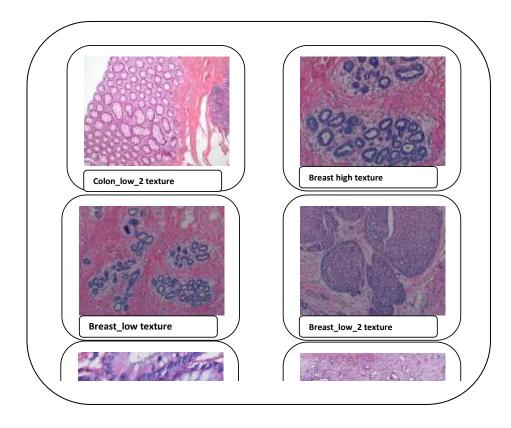


Fig (1) Textural input data ref.(13)

Each textural image taken with (3) sizes such that 1^{st} size with (640X480) pixels 2^{nd} size with (320X240) pixels 3^{rd} size with (160X120) pixels

11 EXPERIMENTAL RESULTS

In order to get the experimental results in this research all experimental textural images with all sizes was takes as input data with high and low pass filters the results can be showing in the following tables

SIZE	IMAGE	Filter	M1	M2	M3	M5	M5
1 st size	D1	F1	1263.707	0.111457	6.65E-02	35.5489	20.19244
		F2	3143.696	0.17786	9.19E-02	56.06904	33.08687
		F3	897.7905	9.02E-02	3.73E-02	29.96335	17.29143
	D2	F1	238.5341	8.70E-02	1.25E-02	15.44465	10.98469
		F2	1291.003	0.207004	1.20E-02	35.93077	27.00098
		F3	92.8866	4.73E-02	2.44E-03	9.637832	6.158852
	D3	F1	545.8879	0.136962	1.79E-02	23.3644	17.21645
		F2	2412.77	0.299078	1.32E-03	49.12028	38.92848
		F3	241.2499	7.98E-02	5.28E-03	15.53232	10.05877
	D4	F1	716.7584	0.190706	3.15E-02	26.77252	20.57236
		F2	3111.161	0.400192	-7.03E-02	55.77814	45.0447
		F3	258.0353	9.65E-02	9.53E-03	16.06358	10.72216
	D5	F1	164.2846	6.34E-02	1.03E-02	12.81744	9.101874
		F2	944.685	0.157767	0.026019	30.73593	22.73455
		F3	53.16197	3.25E-02	1.25E-03	7.291274	4.80416
	D6	F1	2553.71	0.255362	5.56E-02	50.53457	39.71965
		F2	5198.402	0.381233	-5.06E-02	72.10042	57.33464
		F3	2718.642	0.245573	4.38E-02	52.14094	39.49711
2 nd size	D1	F1	649.9882	6.24E-02	3.61E-02	25.49554	11.15004
		F2	1675.779	0.101312	5.13E-02	40.93736	18.68807
		F3	436.7934	4.79E-02	1.78E-02	20.90015	9.055494
	D2	F1	199.4485	6.43E-02	6.17E-03	14.123	9.730828
		F2	1104.712	0.15897	1.42E-02	33.23808	24.23059
		F3	84.39744	3.67E-02	1.48E-03	9.187051	5.632683
	D3	F1	451.3682	0.11066	1.33E-02	21.24599	15.5597
		F2	2168.024	0.255742	1.87E-02	46.56328	36.58924
		F3	185.1046	6.10E-02	3.66E-03	13.60567	8.715924
	D4	F1	627.9062	0.176486	3.13E-02	25.05872	18.97664
		F2	2760.522	0.371264	-4.49E-02	52.54206	42.04366
		F3	212.9454	8.62E-02	8.23E-03	14.59303	9.541515
	D5	F1	167.0064	6.33E-02	1.03E-02	12.92344	9.424343
		F2	999.0452	0.159399	2.86E-02	31.60851	23.69769
		F3	49.41319	3.09E-02	1.08E-03	7.029638	4.783204
	D6	F1	2515.805	0.244773	6.16E-02	50.15912	39.22145
		F2	5124.662	0.361228	-2.23E-02	71.58864	56.70345
		F3	2575.594	0.230928	4.99E-02	50.75165	38.31478
3 rd size	D1	F1	1.160481	2.40E-03	1.67E-05	1.077372	0.584638
		F2	8.382536	6.57E-03	1.83E-04	2.895572	1.599013
		F3	0.393049	7.94E-04	4.63E-06	0.627003	0.19395

 Table (1)

 Represent experimental results for (High pass filters)

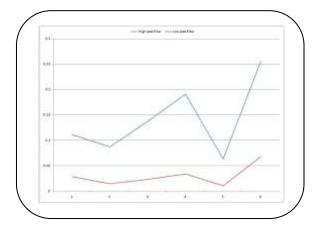
D2	F1	163.8329	5.93E-02	5.56E-03	12.80109	8.930487
	F2	927.0824	0.146365	9.72E-03	30.45129	22.32761
	F3	69.94551	3.46E-02	1.40E-03	8.36424	5.292427
D3	F1	545.7631	0.126701	1.61E-02	23.36408	17.44561
	F2	2532.346	0.285071	1.48E-02	50.32782	40.16198
	F3	200.9987	6.66E-02	3.75E-03	14.17892	9.37331
D4	F1	504.8545	0.143902	2.48E-02	22.47138	16.89616
	F2	2367.695	0.316867	-4.50E-03	48.66419	38.83544
	F3	166.3961	7.06E-02	5.94E-03	12.90084	8.544518
D5	F1	176.8065	5.88E-02	1.21E-02	13.29829	9.085389
	F2	958.7209	0.138563	2.77E-02	30.96654	21.67818
	F3	47.16735	2.78E-02	9.68E-04	6.868586	4.609955
D6	F1	2161.564	0.210308	4.88E-02	46.49761	35.47179
	F2	4616.469	0.312364	4.82E-04	67.95189	52.37095
	F3	2091.233	0.192613	4.61E-02	45.7349	33.84188

Table (2) Represent experimental results for (Low pass filters)

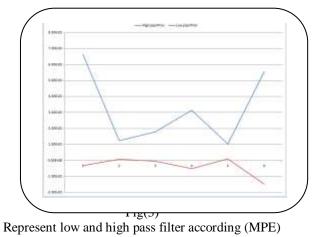
SIZE	IMAGE	Filter	M1	M2	M3	M5	M5
1 st size	D1	F1	74.56312	2.86E-02	-3.14E-03	8.635051	5.663632
		F2	195.3313	4.74E-02	-6.58E-03	13.97619	9.350586
		F3	122.3055	3.73E-02	-4.62E-03	11.05925	7.377107
	D2	F1	7.347031	1.48E-02	7.36E-04	2.710559	1.887842
		F2	21.04507	2.59E-02	-0.00102	4.58752	3.270642
		F3	12.94664	2.01E-02	1.39E-04	3.598168	2.552209
	D3	F1	16.76547	2.35E-02	-5.57E-04	4.094592	2.945108
		F2	47.5927	0.040511	-3.28E-03	6.898791	5.056662
		F3	29.23562	3.15E-02	-1.59E-03	5.407033	3.945738
	D4	F1	23.19281	3.43E-02	-5.11E-03	4.815923	3.610459
		F2	70.01915	0.061297	-1.23E-02	8.367799	6.350704
		F3	42.29988	4.73E-02	-8.33E-03	6.503878	4.926129
	D5	F1	5.269265	1.07E-02	9.77E-04	2.295503	1.578022
		F2	15.53992	1.91E-02	-4.30E-04	3.942096	2.77781
		F3	9.502945	0.014761	5.42E-04	3.082705	2.160727
	D6	F1	202.4069	6.81E-02	-1.48E-02	14.22707	10.63408
		F2	480.383	0.107033	-2.62E-02	21.91779	16.55805
		F3	308.2096	0.085291	-1.99E-02	17.55601	13.23687
2 nd size	D1	F1	37.91845	1.57E-02	-1.51E-03	6.157959	3.086782
		F2	100.1122	2.61E-02	-3.49E-03	10.00587	5.078484
		F3	62.67528	2.06E-02	-2.36E-03	7.916981	4.018234
	D2	F1	6.480366	1.10E-02	1.66E-03	2.545724	1.686856
		F2	17.35986	1.89E-02	9.85E-04	4.166627	2.876381
		F3	10.94731	1.48E-02	1.53E-03	3.308759	2.258126
	D3	F1	13.31484	1.86E-02	5.57E-04	3.649046	2.643095
		F2	38.71466	3.25E-02	-1.10E-03	6.222275	4.573014
		F3	23.62037	2.52E-02	2.10E-05	4.860208	3.561493
	D4	F1	20.49649	3.12E-02	-3.85E-03	4.527424	3.316844

F2 60.65937 5.58E-02 -1.00E-02 7.788619 5.853073 F3 36.94535 4.31E-02 -6.56E-03 6.078429 4.541356 D5 F1 5.410179 0.010709 9.27E-04 2.326041 1.641351 F2 15.92981 1.92E-02 -4.70E-04 3.991323 2.887057 F3 9.762063 1.48E-02 4.96E-04 3.124513 2.247344 D6 F1 196.5977 6.48E-02 -0.01319 14.0217 10.46187 F2 471.9897 0.102627 -2.35E-02 21.7259 16.43016 F3 302.37 8.17E-02 -1.78E-02 17.38925 13.1093 3 rd size D1 F1 0.190946 7.78E-04 7.77E-04 0.480745 0.221197 F3 0.208324 8.41E-04 8.14E-04 0.456475 0.20575 D2 F1 5.377387 1.03E-02 1.61E-03 2.319168 1.565329 F2 14.22892 1.75E-02 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
D5 F1 5.410179 0.010709 9.27E-04 2.326041 1.641351 F2 15.92981 1.92E-02 -4.70E-04 3.991323 2.887057 F3 9.762063 1.48E-02 4.96E-04 3.124513 2.247344 D6 F1 196.5977 6.48E-02 -0.01319 14.0217 10.46187 F2 471.9897 0.102627 -2.35E-02 21.7259 16.43016 F3 302.37 8.17E-02 -1.78E-02 17.38925 13.1093 3 rd size D1 F1 0.190946 7.78E-04 7.77E-04 0.480745 0.221197 F3 0.208324 8.41E-04 8.14E-04 0.456475 0.20575 D2 F1 5.377387 1.03E-02 1.61E-03 2.319168 1.565329 F2 14.22892 1.75E-02 9.62E-04 3.772529 2.644282 F3 8.979833 1.37E-02 1.52E-03 2.996958 2.078309 D3 F1 16.57992			F2	60.65937	5.58E-02	-1.00E-02	7.788619	5.853073
F2 15.92981 1.92E-02 -4.70E-04 3.991323 2.887057 F3 9.762063 1.48E-02 4.96E-04 3.124513 2.247344 D6 F1 196.5977 6.48E-02 -0.01319 14.0217 10.46187 F2 471.9897 0.102627 -2.35E-02 21.7259 16.43016 F3 302.37 8.17E-02 -1.78E-02 17.38925 13.1093 3 rd size D1 F1 0.190946 7.78E-04 7.77E-04 0.437021 0.190517 F2 0.231066 9.05E-04 7.77E-04 0.48745 0.221197 F3 0.208324 8.41E-04 8.14E-04 0.456475 0.20575 D2 F1 5.377387 1.03E-02 1.61E-03 2.319168 1.565329 F2 14.22892 1.75E-02 9.62E-04 3.772529 2.644282 F3 8.979833 1.37E-02 1.92E-03 2.996958 2.078309 D3 F1 16.57992 2.16E-02			F3	36.94535	4.31E-02	-6.56E-03	6.078429	4.541356
F3 9.762063 1.48E-02 4.96E-04 3.124513 2.247344 D6 F1 196.5977 6.48E-02 -0.01319 14.0217 10.46187 F2 471.9897 0.102627 -2.35E-02 21.7259 16.43016 F3 302.37 8.17E-02 -1.78E-02 17.38925 13.1093 3 rd size D1 F1 0.190946 7.78E-04 7.77E-04 0.437021 0.190517 F2 0.231066 9.05E-04 7.77E-04 0.480745 0.221197 F3 0.208324 8.41E-04 8.14E-04 0.456475 0.20575 D2 F1 5.377387 1.03E-02 1.61E-03 2.319168 1.565329 F2 14.22892 1.75E-02 9.62E-04 3.772529 2.644282 F3 8.979833 1.37E-02 1.52E-03 2.9926705 2.9292705 F2 48.10942 3.76E-02 -9.03E-04 4.120138 2.955589 D4 F1 16.97189 2.50E-02 <td></td> <td>D5</td> <td>F1</td> <td>5.410179</td> <td>0.010709</td> <td>9.27E-04</td> <td>2.326041</td> <td>1.641351</td>		D5	F1	5.410179	0.010709	9.27E-04	2.326041	1.641351
D6 F1 196.5977 6.48E-02 -0.01319 14.0217 10.46187 F2 471.9897 0.102627 -2.35E-02 21.7259 16.43016 F3 302.37 8.17E-02 -1.78E-02 17.38925 13.1093 3 rd size D1 F1 0.190946 7.78E-04 7.77E-04 0.437021 0.190517 F2 0.231066 9.05E-04 7.77E-04 0.480745 0.221197 F3 0.208324 8.41E-04 8.14E-04 0.456475 0.20575 D2 F1 5.377387 1.03E-02 1.61E-03 2.319168 1.565329 F2 14.22892 1.75E-02 9.62E-04 3.772529 2.644282 F3 8.979833 1.37E-02 1.52E-03 2.996958 2.078309 D3 F1 16.57992 2.16E-02 -1.97E-04 4.072281 2.992705 F2 48.10942 3.76E-02 -9.03E-04 5.125488 5.15713 F3 29.39305 2.92E-02			F2	15.92981	1.92E-02	-4.70E-04	3.991323	2.887057
F2 471.9897 0.102627 -2.35E-02 21.7259 16.43016 F3 302.37 8.17E-02 -1.78E-02 17.38925 13.1093 3 rd size D1 F1 0.190946 7.78E-04 7.77E-04 0.437021 0.190517 F2 0.231066 9.05E-04 7.77E-04 0.480745 0.221197 F3 0.208324 8.41E-04 8.14E-04 0.456475 0.20575 D2 F1 5.377387 1.03E-02 1.61E-03 2.319168 1.565329 F2 14.22892 1.75E-02 9.62E-04 3.772529 2.644282 F3 8.979833 1.37E-02 1.52E-03 2.996958 2.078309 D3 F1 16.57992 2.16E-02 -1.97E-04 4.072281 2.992705 F2 48.10942 3.76E-02 -2.49E-03 6.93684 5.175713 F3 29.39305 2.92E-02 -9.83E-04 5.422117 4.033255 D4 F1 16.97189 2.50E-02 <td></td> <td></td> <td>F3</td> <td>9.762063</td> <td>1.48E-02</td> <td>4.96E-04</td> <td>3.124513</td> <td>2.247344</td>			F3	9.762063	1.48E-02	4.96E-04	3.124513	2.247344
Size F3 302.37 8.17E-02 -1.78E-02 17.38925 13.1093 3 rd size D1 F1 0.190946 7.78E-04 7.77E-04 0.437021 0.190517 F2 0.231066 9.05E-04 7.77E-04 0.480745 0.221197 F3 0.208324 8.41E-04 8.14E-04 0.456475 0.20575 D2 F1 5.377387 1.03E-02 1.61E-03 2.319168 1.565329 F2 14.22892 1.75E-02 9.62E-04 3.772529 2.644282 F3 8.979833 1.37E-02 1.52E-03 2.996958 2.078309 D3 F1 16.57992 2.16E-02 -1.97E-04 4.072281 2.992705 F2 48.10942 3.76E-02 -9.83E-04 5.422117 4.033255 D4 F1 16.97189 2.50E-02 -9.03E-04 4.120138 2.95589 F2 47.61296 4.42E-02 -4.71E-03 6.900955 5.154688 F3 29.58764		D6	F1	196.5977	6.48E-02	-0.01319	14.0217	10.46187
3 rd size D1 F1 0.190946 7.78E-04 7.77E-04 0.437021 0.190517 F2 0.231066 9.05E-04 7.77E-04 0.480745 0.221197 F3 0.208324 8.41E-04 8.14E-04 0.456475 0.20575 D2 F1 5.377387 1.03E-02 1.61E-03 2.319168 1.565329 F2 14.22892 1.75E-02 9.62E-04 3.772529 2.644282 F3 8.979833 1.37E-02 1.52E-03 2.996958 2.078309 D3 F1 16.57992 2.16E-02 -1.97E-04 4.072281 2.992705 F2 48.10942 3.76E-02 -2.49E-03 6.93684 5.175713 F3 29.39305 2.92E-02 -9.83E-04 5.422117 4.033255 D4 F1 16.97189 2.50E-02 -9.03E-04 4.120138 2.955589 F2 47.61296 4.42E-02 -4.71E-03 6.900955 5.154688 F3 29.58764 3.43E-0			F2	471.9897	0.102627	-2.35E-02	21.7259	16.43016
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			F3	302.37	8.17E-02	-1.78E-02	17.38925	13.1093
F3 0.208324 8.41E-04 8.14E-04 0.456475 0.20575 D2 F1 5.377387 1.03E-02 1.61E-03 2.319168 1.565329 F2 14.22892 1.75E-02 9.62E-04 3.772529 2.644282 F3 8.979833 1.37E-02 1.52E-03 2.996958 2.078309 D3 F1 16.57992 2.16E-02 -1.97E-04 4.072281 2.992705 F2 48.10942 3.76E-02 -2.49E-03 6.93684 5.175713 F3 29.39305 2.92E-02 -9.83E-04 5.422117 4.033255 D4 F1 16.97189 2.50E-02 -9.03E-04 4.120138 2.955589 F2 47.61296 4.42E-02 -4.71E-03 6.900955 5.154688 F3 29.58764 3.43E-02 -2.47E-03 5.440036 4.01888 D5 F1 5.655653 1.01E-02 8.44E-05 2.378417 1.596009 F2 17.18644 0.018148 -1.68E-03	3 rd size	D1	F1	0.190946	7.78E-04	7.77E-04	0.437021	0.190517
D2 F1 5.377387 1.03E-02 1.61E-03 2.319168 1.565329 F2 14.22892 1.75E-02 9.62E-04 3.772529 2.644282 F3 8.979833 1.37E-02 1.52E-03 2.996958 2.078309 D3 F1 16.57992 2.16E-02 -1.97E-04 4.072281 2.992705 F2 48.10942 3.76E-02 -2.49E-03 6.93684 5.175713 F3 29.39305 2.92E-02 -9.83E-04 5.422117 4.033255 D4 F1 16.97189 2.50E-02 -9.03E-04 4.120138 2.95589 F2 47.61296 4.42E-02 -4.71E-03 6.900955 5.154688 F3 29.58764 3.43E-02 -2.47E-03 5.440036 4.01888 D5 F1 5.655653 1.01E-02 8.44E-05 2.378417 1.596009 F2 17.18644 0.018148 -1.68E-03 4.146098 2.808839 F3 10.39713 0.013982 -6.03E-0			F2	0.231066	9.05E-04	7.77E-04	0.480745	0.221197
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			F3	0.208324	8.41E-04	8.14E-04	0.456475	0.20575
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		D2	F1	5.377387	1.03E-02	1.61E-03	2.319168	1.565329
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			F2	14.22892	1.75E-02	9.62E-04	3.772529	2.644282
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			F3	8.979833	1.37E-02	1.52E-03	2.996958	2.078309
F3 29.39305 2.92E-02 -9.83E-04 5.422117 4.033255 D4 F1 16.97189 2.50E-02 -9.03E-04 4.120138 2.95589 F2 47.61296 4.42E-02 -4.71E-03 6.900955 5.154688 F3 29.58764 3.43E-02 -2.47E-03 5.440036 4.01888 D5 F1 5.655653 1.01E-02 8.44E-05 2.378417 1.596009 F2 17.18644 0.018148 -1.68E-03 4.146098 2.808839 F3 10.39713 0.013982 -6.03E-04 3.224803 2.183437 D6 F1 162.8856 5.45E-02 -1.06E-02 12.76404 9.177001 F2 386.1622 8.59E-02 -1.82E-02 19.65312 14.357		D3	F1	16.57992	2.16E-02	-1.97E-04	4.072281	2.992705
D4 F1 16.97189 2.50E-02 -9.03E-04 4.120138 2.955589 F2 47.61296 4.42E-02 -4.71E-03 6.900955 5.154688 F3 29.58764 3.43E-02 -2.47E-03 5.440036 4.01888 D5 F1 5.655653 1.01E-02 8.44E-05 2.378417 1.596009 F2 17.18644 0.018148 -1.68E-03 4.146098 2.808839 F3 10.39713 0.013982 -6.03E-04 3.224803 2.183437 D6 F1 162.8856 5.45E-02 -1.06E-02 12.76404 9.177001 F2 386.1622 8.59E-02 -1.82E-02 19.65312 14.357			F2	48.10942	3.76E-02	-2.49E-03	6.93684	5.175713
F2 47.61296 4.42E-02 -4.71E-03 6.900955 5.154688 F3 29.58764 3.43E-02 -2.47E-03 5.440036 4.01888 D5 F1 5.655653 1.01E-02 8.44E-05 2.378417 1.596009 F2 17.18644 0.018148 -1.68E-03 4.146098 2.808839 F3 10.39713 0.013982 -6.03E-04 3.224803 2.183437 D6 F1 162.8856 5.45E-02 -1.06E-02 12.76404 9.177001 F2 386.1622 8.59E-02 -1.82E-02 19.65312 14.357			F3	29.39305	2.92E-02	-9.83E-04	5.422117	4.033255
F3 29.58764 3.43E-02 -2.47E-03 5.440036 4.01888 D5 F1 5.655653 1.01E-02 8.44E-05 2.378417 1.596009 F2 17.18644 0.018148 -1.68E-03 4.146098 2.808839 F3 10.39713 0.013982 -6.03E-04 3.224803 2.183437 D6 F1 162.8856 5.45E-02 -1.06E-02 12.76404 9.177001 F2 386.1622 8.59E-02 -1.82E-02 19.65312 14.357		D4	F1	16.97189	2.50E-02	-9.03E-04	4.120138	2.955589
D5 F1 5.655653 1.01E-02 8.44E-05 2.378417 1.596009 F2 17.18644 0.018148 -1.68E-03 4.146098 2.808839 F3 10.39713 0.013982 -6.03E-04 3.224803 2.183437 D6 F1 162.8856 5.45E-02 -1.06E-02 12.76404 9.177001 F2 386.1622 8.59E-02 -1.82E-02 19.65312 14.357			F2	47.61296	4.42E-02	-4.71E-03	6.900955	5.154688
F2 17.18644 0.018148 -1.68E-03 4.146098 2.808839 F3 10.39713 0.013982 -6.03E-04 3.224803 2.183437 D6 F1 162.8856 5.45E-02 -1.06E-02 12.76404 9.177001 F2 386.1622 8.59E-02 -1.82E-02 19.65312 14.357			F3	29.58764	3.43E-02	-2.47E-03	5.440036	4.01888
F3 10.39713 0.013982 -6.03E-04 3.224803 2.183437 D6 F1 162.8856 5.45E-02 -1.06E-02 12.76404 9.177001 F2 386.1622 8.59E-02 -1.82E-02 19.65312 14.357		D5	F1	5.655653	1.01E-02	8.44E-05	2.378417	1.596009
D6 F1 162.8856 5.45E-02 -1.06E-02 12.76404 9.177001 F2 386.1622 8.59E-02 -1.82E-02 19.65312 14.357			F2	17.18644	0.018148	-1.68E-03	4.146098	2.808839
F2 386.1622 8.59E-02 -1.82E-02 19.65312 14.357			F3	10.39713	0.013982	-6.03E-04	3.224803	2.183437
		D6	F1	162.8856	5.45E-02	-1.06E-02	12.76404	9.177001
F3 249.2459 6.86E-02 -1.40E-02 15.78922 11.48058			F2	386.1622	8.59E-02	-1.82E-02	19.65312	14.357
			F3	249.2459	6.86E-02	-1.40E-02	15.78922	11.48058

With M1=MSE M2=MAPE M3=MPE M4=RMSD M5=MAE And F1= Enhancement Filter F2= Sharpening Filter F3= Smoothing Filter


www.aasrc.org/aasrj

From the above tables we can note that the out put images effected With changing sizes and filters and the statistical measures effected and give different results in cases of changes in (texture size, texture kind and adoptive filter)


	 Ne Liesaellie	
1110		/
		/
1300		
100		
	~	/

Fig(1)

Represent low and high pass filter according (MSE)

Represent low and high pass filter according (MAPE)

From the above figures we can note that output pixels for low pass filters with lowest changed comparing with output pixels for high pass filters and changing texture kind can give deferent result for all measures

12 CONCLUSION & SUGGESTION

From the above results we can give the following conclusion and suggestion 1-the out put pixels values affected with statically measure form

2- high pass filters give great canings comparing with low pass filters

3-enhanced, smooth and sharp filter effected with textural kind

4-output image changes depend on image size

5-measuring changes in input texture can be made by spectral, mathematical measures addition to statistical measures

6-taking deferent textures format (bmp, gif ,..., etc) can give deferent output pixel values

REFRENCES

- A. K. Jain, "Fundamentals of Digital Image Processing", Prentice Hall of India, First Edition, 1989
- B. Weiss, "Fast Median and Bilateral Filtering," ACM Transactions on Graphics (TOG), vol. 25, no. 3, pp. 519–526, 2006.
- F. Zhang and E.R. Hancock, Graph spectral image smoothing using the heat kernel, Pattern Recognition, 41 (2008), pp. 3328–3342.
- G. Arce, "Multistage Order Statistic Filters for Image Sequence Processing," IEEE Trans. Signal Processing, vol. 39, no. 5, pp. 1146–1163, 1991.
- G. Gupta "Algorithm for Image Processing Using Improved Median Filter and Comparison of Mean, Median and Improved Median Filter" IJSCE vol. 1, no.5, pp. 304–311, 2011.
- J. Gil and M. Werman, "Computing 2-D Min, Median, and Max Filters," IEEE Trans. Pattern Anal. Machine Intell., vol. 15, no. 5, pp. 504–507, 1993.
- J.Y.Kim, Lee-Sup Kim, and Seung-Ho Hwang "An Advanced Contrast Enhancement Using Partially Overlapped Sub-Block Histogram Equalization" IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY vol.11, no.4, pp. 454–484, 2001.
- L. Alparone, V. Cappellini, and A. Garzelli, "A Coarse-to-Fine Algorithm for Fast Median Filtering of Image Data With a Huge Number of Levels," Signal Processing, vol. 39, no. 1-2, pp. 33–41, 1994.
- Rafael C.Gonzalez and Richard E. woods, "Digital Image Processing", Pearson Education, Second Edition, 2005
- S. Osher and L. Rudin, Feature-oriented image enhancement using shock filters, SIAMJournal on Numerical Analysis, 27 (1990), pp. 919–940.
- T. Song, M. Gabbouj, and Y. Neuvo, "Center Weighted Median Filters: Some Properties and Applications in Image Processing," Signal Processing, Vol. 35, No. 3, PP. 213-229, 1994
- T. Huang, G. Yang, and G. Tang, "A Fast Two-Dimensional Median Filtering Algorithm," IEEE Trans. Acoust., Speech, Signal Processing, vol. 27, no. 1, pp. 13–18, 1979.

http://www.cs.bilkent.edu.tr/~gunduz/teaching/cs491/fall08/